Logo
Empowering weather and climate forecast

Weather & climate datasets and tools

Datasets and weather & climate machine learning applications will be made accessible via Git; deliverables can be downloaded and papers are linked from this website. Results will be the topic of talks and workshops.

Dataset to emulate radiation

Due 2021-08-31:Delivered

Now available for public use: This dataset enables the use of machine learning to learn the process of radiative heating -- one of the key processes in weather and climate models. The dataset will be available in several tiers with different sizes up to several terabytes. It enables users to accelerate the representation of interactions between the radiation from the sun and the Earth, and the vertical structure of the atmosphere, including clouds. The dataset has a very high resolution of 137 levels in the vertical direction.

Get data set

Dataset for energy production forecast

Due 2021-08-31:Delivered

MAELSTROM presents a dataset to forecast the energy production of the near and mid-term future using machine learning. Weather forecast data of the past is used in conjunction with local production of energy to train a tool that can predict power production based on weather forecasts.

Get data set

Dataset for 2m temperature downscaling

Due 2021-08-31:Delivered

MAELSTROM presents a novel dataset to enable the users to explore deep learning methods for 2m temperature downscaling. This dataset includes 2m temperature and surface elevation.

Get data set

Dataset for ensemble predictions

Due 2021-08-31:Delivered

MAELSTROM offers a benchmark machine learning dataset for temperature at 850 hPa and geopotential at 500hPa ensemble forecasts. The dataset consists of T (Temperature), Z(Geopotential), U (U component of wind), V (V component of wind), D (Divergence), W (Vertical velocity) and Q (Specific humidity) input variables with 11 ensemble members at 11 pressure levels and are based hindcast simulations of the European Centre for Medium Range Weather Forecasts. This dataset enables users to learn how to use deep learning for post-processing of ensemble weather forecasts.

Get data set

Datasets for 2m temp. and precipitation short-range forecasts

Due 2021-08-31:Delivered

MAELSTROM offers new datasets for 2m temperature and hourly precipitation short-range forecasts over Nordics/Northern Europe. The dataset consists of several terabytes of real-time observations and forecast outputs, which is provided on a 1796x2321 grid 47 input variables and 60 forecast lead times. This dataset allows the users to explore the use of deep learning for 2m temperature and precipitation predictions.

Get data set

Report on machine learning solutions and tools

Due 2021-09-30:Delivered

To learn more about the first versions of machine learning tools and solutions, including architectures and loss functions, that will be studied for the six machine learning benchmark datasets, check this report. We present the results of a survey of customized machine learning solutions and tools that MAELSTROM applications will adopt.

Download report

Use citizen observations for better local forecasts

Due 2024-03-31: 489 days left

There is strong demand for accurate local weather forecasts - but NWP models may be unable to forecast local (extreme) weather. We want to use observations of "regular people" to improve high-resolution analyses. NWP post-processing can significantly improve operational weather forecasts on weather apps like yr.no

Incorporate social media data into prediction framework

Due 2024-03-31: 489 days left

We believe that weather-related information from social networks could enhance local weather predictions for most dominant infrastructures in Europe (e.g. airports) in near real-time. So we bring tweets and othe social mewdia output to the table as a new "weather sensor".

Neural network emulators for faster forecast models & data assimilation

Due 2024-03-31: 489 days left

Radiative heating is a vital component of W&C models. But data collection is a significant cost factor, so that you often end up with lower resolution and larger timesteps than would lead to optimal forecasts.