Logo
Empowering weather and climate forecast
Slider image
MAELSTROM brings people together to discuss and advance the state of HPC-based ML for weather and climate modelling – as we did in our first dissemination workshop.
Read more
planet earth climate
MAELSTROM develops new machine learning applications in weather and climate science that can exploit exaflop performance.
MAELSTROM delivers benchmark datasets to allow for a quantitative intercomparison of machine learning tools — serving as blueprints for many machine learning applications in Earth system science.
Read more
weather event
MAELSTROM develops software environments to build exascale-ready machine learning tools that can be used within weather and climate science and beyond.
Read more
HPC system
MAELSTROM develops compute system designs that are optimised for machine learning applications for weather and climate predictions at the node and system level.
MAELSTROM will transfer this knowledge to machine learning applications in other domains to optimise the use of future EuroHPC systems.
Read more
MAELSTROM co-design cycle
To strengthen high-performance computing and weather and climate prediction in Europe, MAELSTROM will enhance the use of machine learning in Earth system science via concerted developments of machine learning, software and hardware tools in a so-called co-design cycle.
Read more

MAELSTROM news

We need more women in HPC, as it is changing the world

2022-04-24, Jan Mirus

We at MAELSTROM are no poster child either, no. Our team is a great bunch of people from all over the world, young and old, with all different kinds of backgrounds – but also mainly male.
HPC is about to change science and technology, and experience tells, that whatever changes science and technology, will sooner or later change our societies, our culture. Our hopes are that it will change the world for the better. But for this aim, women's perspectives, skills and opinions must be a full part of HPC.
A related event worth putting in your diaries is the Women in HPC — ISC’22 Workshop. Y'all probably have the ISC 2022 on your radars anyway, so make sure to allow time on Thu 02, Jun, 2022 9:00 am - 1:00 pm.

Workshop presentations, results & recordings ready for download

2022-03-29, Jan Mirus

60 participants, five MAELSTROM speakers, three speakers from our EuroHPC partner projects, and three speakers from the wider science and technology community, interactive polling and subsequent discussions made our first dissemination workshop a high-profile forum on the present and the future of ML-based weather & climate forecasting in a HPC context. To download the presentations that were shown, and watch the recordings of our talks, visit the ECMWF page.

First MAELSTROM workshop approaching!

2022-03-14, Jan Mirus

150 registrations for our first workshop! Yikes.
We want to make this a truly interactive event, and we're honored to welcome speakers of some of our EuroHPC sister projects: TimeX, Red-Sea and Deep-Sea.
Also, we were able to win more high-caliber speakers:
Jussi Leinonen (MeteoSwiss) will be talking about "Time-Consistent Downscaling of Atmospheric Fields with Generative Adversarial Networks";
Ryan Abernathey (Columbia) will introduce "Pangeo: An Open Source Ecosystem for Data-Intensive Science";
Thorsten Kurth (from our partner NVIDIA) will feature "Deep Learning for Earth Sciences in the HPC Context".
Luckily, this event is digital, so the size of our venue is flexible. You can still be part of it:
Visit the ECMWF page to register.

Happy women in science day!

2022-02-11, Peter Dueben

Let's celebrate all the great work of women in science. See, for example, a couple of fantastic female individuals working at ECMWF.

Machine Learning Crash Course for Earth System Science

2022-01-28, Peter Dueben

There has been been a 4-hour Crash Course in machine learning for Earth System Science at the "Center for Earth System Observation and Computational Analysis" (CESOC) by MAELSTROM Coordinator Peter Dueben that included both lectures and hands-on exercises.

See all news

Consortium

Associated partners

See details