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1 Executive Summary 

This document provides the results of a survey of the machine learning (ML) tools and architectures 

of the six MAELSTROM application. The traditional ML approaches and state-of-the-art deep learning 

architectures are reviewed.  The loss function and evaluation criteria that will be used in the 

MAELSTROM project were also surveyed for this report. Furthermore, the literature that is relevant 

for the six MAELSTROM applications was reviewed thoroughly and a summary is provided. The sizes 

of datasets and ML models are estimated and the ML software and parallelization strategy used for 

the six applications are summarised in the end of this report. 
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2 Introduction 

2.1 About MAELSTROM  

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and 

solution accuracy. Customised compute systems will be designed that are optimised for application 

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward needs of weather and 

climate applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with computer system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the 

workflow of weather and climate predictions including the processing of observations, the 

assimilation of observations to generate initial and reference conditions, model simulations, as well 

as post-processing of model data and the development of forecast products. For each application, 

benchmark datasets with up to 10 terabytes of data will be published online for training and 

machine learning tool-developments at the scale of the fastest supercomputers in the world. 

MAELSTROM machine learning solutions will serve as a blueprint for a wide range of machine 

learning applications on supercomputers in the future. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

To analyse the design of several ML options and loss functions.  To identify the requirements for ML 
architectures, loss functions, ML software and tools, expected data sizes, and scalability limits for the 
six MAELSTROM ML applications. 
 
Deliverable 1.2 is one of four MAELSTROM deliverables that survey the state-of-the-art in terms of 

methods, tools and developments in machine learning at the beginning of the project and aim to build 

additional links between the three work packages that are involved in the MAELSTROM co-design 

cycle. Deliverable 1.2 is a survey of machine learning methods and tools that are currently used for 

weather and climate applications. Deliverable 2.1 is a survey of existing machine learning workflow 

tools and a summary of the MAELSTROM protocol and machine learning requirements. Deliverables 
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3.1 and 3.2 provide a systematic analysis of the hardware requirements for the MAELSTROM 

applications and a roadmap analysis of hardware that will be relevant for machine learning in 

MAELSTROM. 

 

2.2.2 Work performed in this deliverable 

The potential ML architectures and loss functions are identified and analysed. The state-of-the-art 
ML solutions in the Weather and Climate (W&C) domain are thoroughly reviewed to demonstrate 
how the ML solutions have been adopted in the W&C applications.  In addition, the ML 
architectures, software and tools that are going to be used in the subsequent studies for the six 
applications are surveyed in this report. The expected data sizes and the scalability limits of the six 
applications are summarized.  

2.2.3 Deviations and counter measures 

There are no significant deviations from the planned contributions of the deliverable.  



 

MAELSTROM 2021 

 
 

D1.2 Report on a survey of MAELSTROM applications and ML tools and architectures 
 9 

 

3 Introduction to the background of the six applications  

Modern weather prediction relies on numerical weather prediction (NWP), whose operational 
workflow is illustrated in Figure 1. Continuously collected observations constitute the starting point in 
this workflow. These observations are pre-processed and assimilated to generate a gridded initial 
state of the Earth system. Given the estimated initial conditions, a numerical model is used to simulate 
the future evolution of the atmospheric state which then provides a forecast for each grid point in the 
NWP model. However, the predictions contain systematic errors and are not necessarily 
representative for a specific location due to the truncated spatial-temporal resolution of the numerical 
model. To correct for these biases, but also to extract relevant information for a bespoke forecast 
product, the model output undergoes a final post-processing step.  

In light of the successful application of machine learning (ML)/ Deep learning (DL) in domains such as 
healthcare (Esteva et al. 2019), autonomous driving (Hu et al. 2020) and fraud detection (Awoyemi et 
al., 2017), the W&C community is increasingly aware of ML techniques and starts to explore their 
application across the NWP workflow to further improve weather predictions. For observations, these 
include weather data monitoring, real-time quality control for observational data, anomaly 
interpretation, guided quality assignment and decision making, data fusion from different observation 
sources as well as the correction of systematic errors. For data assimilation, ML techniques can replace 
the traditional statistical approach and be deployed to learn and correct model and observational 
errors, to build faster and more accurate observation operations and linearised models for variational 
data assimilation. For numerical weather forecasts, these include to emulate model components, 
develop improved parameterization schemes to represent sub-grid-scale features, build better error 
models, learn the underlying equations of motion, or develop low-complexity models. ML is also used 
to postprocess model output, including feature detection (e.g., tropical cyclones or atmospheric 
rivers), uncertainty quantification, or error corrections, for example for seasonal predictions. For 
product generation, these include down-scaling to improve local predictions, real-time adjustments 
of forecast products, bespoke products for business usage and many more. If fully implemented, ML 
offers both more accurate forecasts and much advanced efficiency for computing and data handling, 
especially for very large computational problems at peta or exascale. 

 

 

Figure 1: The workflow of current numerical weather prediction 

MAELSTROM will cover the entire W&C workflow with six selected ML applications A1-A6 to explore 

the capability of ML in the context of NWP, in detail:  

A1: Blend citizen observations and numerical weather forecasts: Public weather forecast providers 

strive to deliver forecasts that are accurate and tailored to the specific locations of end users. To 

produce high resolution forecasts, machine learning models need high resolution target fields for 
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training. The target field in the A1 dataset is constructed from measurements of Netatmo’s network 

of citizen weather stations. The network density is roughly two orders of magnitude higher than the 

density of the network of conventional stations operated by MET Norway.  The target of A1 is to 

provide post-processed NWP forecasts on a 1 km resolution grid of size 2321x1796 and 60 lead hours.  

The objective of AP1 is to train neural network models on such grids with TBs of training data. The 

machine learning application aims to improve MET Norway’s operational short-range forecasts of 

temperature and precipitation for the Nordic countries. 

A2: Incorporate social media data into the prediction framework: The application A2 is studying the 

analysis of social media data (Twitter) to extract weather information and to make prediction. Twitter 

messages (Tweets) may contain messages about weather events like “rain”, or “sun”, however these 

words are context-dependent and must be distinguished from non-weather-related messages. Tweets 

most often contain location information, depending on user consent, like geolocation or browser 

information. The Twitter API allows full access for academic research. Application A2 aims at 

incorporating the Twitter information to enhance weather prediction. The steps to process Tweets 

include a first evaluation of the probability that the information is credible, a second evaluation if the 

content is for classification or contains numerical data, a third evaluation to provide the information 

as a feature stream to weather prediction schemes, and a fourth evaluation to use the data in a 

learning task together with NWP data.  

A3: Build neural network emulators to speed-up weather forecast models and data assimilation: 

Due to limited resolution, not all important processes can be represented explicitly within weather 

and climate models. Processes that cannot be resolved explicitly are represented by so-called 

parameterization schemes that mimic sub-grid-scale processes based on the physical fields that are 

resolved. Application A3 will explore the emulation of physical parameterization schemes using neural 

networks. We will build datasets from the IFS operational weather forecasting model to enable 

researchers to build emulators for components of the physical parametrisation schemes. These 

emulators will map the inputs of a conventional parametrisation scheme to the outputs of the 

schemes, while taking less time than the conventional scheme. Crucially, final testing will need to 

couple emulators to the IFS model to test stability and accuracy. These emulators would be useful in 

both the forecasting and data assimilation tasks. 

A4: Improve ensemble predictions in forecast post-processing: To be useful, weather forecasts are 

not only required to predict the most likely future scenario, but also need to produce the probabilities 

for certain predictions of weather events. Methods such as Ensemble Model Output Statistics (EMOS) 

(Gneiting et al. 2005) and Bayesian Model Averaging (BMA) (Raftery et al., 2005) currently allow for 

improvements of the raw ensemble forecast skill. Hamill and Whitaker (2007) show initial explorations 

of those techniques on re-forecast datasets, also used in our work, for temperature at 850 hPa (T850) 

and geopotential at 500 hPa (Z500). Advances in neural networks have only recently reached the field 

of ensemble models in weather forecasting, focusing on its application to specific weather stations. 

A4 will expand on this work by applying deep neural networks to improve the forecast skill for global 

ensemble predictions as a post-processing step. If the quality for ensemble predictions can be 

improved, less ensemble members can be run in ensemble predictions, and computational cost can 

be reduced. 
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A5: Improve local weather predictions in forecast post-processing: Contemporary NWP models have 

reached a remarkable quality in forecast accuracy (see e.g. Bauer et al., 2015).  However, there are 

enormous computational costs of running these models on a high spatial resolution and shortcomings 

in the numerical model itself, e.g. due to the applicability of physical parameterizations. Thus, 

statistical downscaling is an appealing approach to circumvent the burden of operating costly 

numerical models at ever higher spatial resolution. Inspired by the success of deep neural networks 

for generating super-resolution images in computer vision (e.g. Mahapatra et al. 2019, Wang et al. 

2021), first studies have started to transfer these techniques to the meteorological domain (e.g. Sha 

et al., 2020, Leinonen et al., 2020). AP5 will follow up these first approaches aiming to establish a 

robust downscaling neural network that allows handling different meteorological variables over 

complex terrain. 

A6: Provide bespoke weather forecasts to support energy production in Europe: One of the most 

important challenges to mitigate climate change is to increase the generation of renewable energies. 

Accurate forecasts for renewable energy generation rely heavily on weather predictions, local 

measurements, and real-time production data from wind turbines and solar panels. A4 aims to 

significantly improve predictions of power production from renewable energy sources in order to 

optimise the production of renewable energy. Possible users of the improved predictions are power 

producers, trading companies, grid operators and even whole countries. Machine learning will be used 

to fuse the information of local conditions (measurements of local energy production and weather) 

and numerical weather predictions to learn to predict the energy production at local sites in the 

future. 

 
 

 

 

 

 

 

 

 



 

MAELSTROM 2021 

 
 

D1.2 Report on a survey of MAELSTROM applications and ML tools and architectures 
 12 

 

4 Survey of Machine learning solutions  

4.1 Review of ML architectures 

ML is a highly interdisciplinary field that builds upon various fields such as artificial intelligence, 

information theory, optimization theory, statistics, and many other disciplines of sciences (Qiu et al., 

2016).  There is a long history of using statistical methods in W&C applications.  Generalized linear 

models show potential capability for simulating realistic sequences of daily rainfall (Yang et al. 2005) 

and rainfall occurrence forecast (Little et al. 2009).  

Even though the traditional statistics and machine learning can be used for prediction and inference, 

there are still differences between them. In principle, the statistical approach focuses on the inference 

through creating and fitting a probability model, the assumption is verified for the given specified 

model. In contrast, ML is widely used for prediction through discovering the underlying patterns of 

the data as noted in Bzdok et al. 2018.  

ML has been employed in many W&C applications. Multilayer Perceptron (ANN) were explored for 

downscaling of 2m temperature and precipitation (Schoof and Pryor, 2001) and for predicting global 

radiation by the study of Voyant et al. (2012).  Support Vector Machines with various types of kernel 

functions were employed for solar intensity forecasting (Sharma et al., 2011). Tree-based models, 

decision trees and random forests, were also applied successfully to predict mesoscale convective 

areas (Gagne et al., 2009) and the probability of severe hail (Ahijevych et al., 2016).  

Unsupervised learning such as cluster approaches are widely adopted to reduce the input dimensions, 

simplify the data analysis and for better visualization in meteorology. Kumpf et al. (2018) introduce 

the cluster approach Principle Component Analysis (PCA) to reduce input dimensionality and apply K-

mean clusters to investigate the ensemble behaviour and determination of physical processes that 

caused the uncertainty for toopical cyclone Karl in 2016.  

More recently, DL has proven success in the Computer Vision domain on how to learn the spatial-

temporal patterns from data for better prediction and has started to be employed in W&C 

applications. DL can be considered a subset of ML. In contrast to traditional ML techniques that 

typically adopt architecture with “shallow“ structure, DL consists of deeper architectures that include 

more hidden layers to automatically learn the hierarchical representation from the data, and 

therefore, increase the prediction skills. Convolutional neural networks (CNN) are considered to be 

the most popular DL for W&C applications. Gagne et al. (2019) have applied CNN to NWP data to 

identify storms most likely to develop severe hail, and the corresponding features that were learned 

via convolution layers were contributing most to the hail prediction. (Lagerquist et al., 2019) used CNN 

to predict the movement of weather fronts.  Shi et al. (2015) extended the CNN with Long-short term 

memory (LSTM) cells to predict radar images for precipitation nowcasting. GANs with dropout 

techniques for ensemble weather forecasts were tried in the study by Bihlo (2020).  

In the following part, we will briefly review and introduce the traditional machine learning techniques 

and then highlight some advanced deep learning techniques, which will potentially be used in the six 

MAELSTROM’s applications. 
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4.1.1 Traditional machine learning techniques 

The traditional ML methods are mathematical models with specified structure that learn to perform 

the task from the data. Traditional ML includes algorithms such as feedforward artificial neural 

network, support vector machine, decision trees etc. These methods can potentially learn complex 

and underlying patterns and relationships from the data, and are easy to interpret.  

Feedforward Artificial Neural Network (ANNs; Figure 2). The first neural model was introduced by 

McCulloch and Pitts (McCulloch and Pitts, 1943). The model was inspired by animals’ central nervous 

systems (in particular the brain). An increasing number of different models considered as ANNs are 

continuously developed. Multiplayer layer Perception (MLP) is one of the most popular feedforward 

artificial neural networks. The weight of the neurons that are interconnected across different layers 

of ANNs are adjusted at each iteration by minimizing the cost function, which is computed from the 

loss functions computed by predicted and real outputs. The back-propagation algorithm is used to 

update individual weights during the training period and is building the foundation of supervised 

learning networks.   

Support Vector Machine (SVM; Figure 3): SVM has been developed in the framework of statistical 

learning theory by Vapnik (1999). Afterwards, they became one of the most robust classification 

algorithms in various fields of applications.  Due to its strong generalization capability with optimal 

solution and discriminative power, the SVM is one of the most popular machine learning tools in 

recent years (Cervantes et al., 2020).  The idea of SVM is to find an optimal separating hyperplane 

(defined by equation 𝑤𝑥 + 𝑏 = 0 in Figure 3) with maximum margin ||
1

𝑤
|| in a high-dimensional 

space between classes in the training dataset. The simplest SVM is to separate data linearly in the 

feature space. However, for the cases that cannot be separated linearly, non-linear kernel functions, 

such as radial basis function, polynomial and sigmoidal functions are employed in SVM. These kernels 

can project the input to a higher feature space to make it linear separable to enhance the 

generalization ability of the SVM (Cervantes et al., 2020). 

Decision tree method: Decision trees use information gain to determine the structure of the tree. As 

one of the most important decision tree algorithms, the Classification and Regression Tree (CART) 

can be considered as a binary recursive partitioning (Breiman et al., 1984). The term ‘binary’ implies 

that the data (represented by the parent node) are split into subsets (child nodes) based on evaluation 

functions (e.g., Gini diversity index, the entropy, or the error index). The binary partition will be 

processed repeatedly on child nodes to yield additional children until only a few samples remain in 

the terminal subset. Normally, each node corresponds to a variable. In such a case, the importance 

score for a variable, when it is used as a splitter, can be determined by summing the improvement 

scores with respect to the used evaluation function of all nodes. In this regard, tree-based algorithms 

are always employed for variable importance rank and variable selection. Random Forests, which was 

first introduced by Breiman (2001)., are based on the CART (Figure 4), It is an ensemble algorithm that 

applies bagging methods on CART. Different from CART, RF selects only a few features randomly 

during training instead of using all the inputs, which allows to reduce the runtime.  
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Figure 2: MLP architecture consists of three layers: 
inputs, hidden, and output layer, as well as the 
neurons and their connections. 

 
Figure 3: SVM architecture to find the optical hyperplane to 

maximize the margin between classes. 

 
Figure 4:  The RF architecture is composed of several individual CART 

4.1.2 Advanced deep learning techniques 

To gain better performance, traditional ML requires large data sets and extensive hand-crafted feature 

engineering processes. While for DL, the features of the data can be learned through DL and require 

less feature engineering process. Although various DL architectures have been and are continuously 

invented nowadays, this report will focus on architectures which are used in the MAELSTROM project, 

i.e. convolutional neural network (CNN), recurrent neural network (RNN), Generative Adversarial Nets 

(GAN), Dense nets, Inception Nets, Transformer, and Symbolic regression.  

CNN:  Convolution layers (LeCun et al. 1989) in a neural network connect a neighbourhood of pixels 

to a shared neuron. The weights governing this connection are reused for each neighbourhood of 

pixels. CNN layers are very popular, particularly in image-based tasks, due to their small number of 

trainable parameters when compared with fully-connected layers. A convolutional neural network is 

constructed by a series of convolutional layers, often alongside pooling layers where the task requires 

aggregation of information, e.g. classification of an image.  

U-net: The U-net structure was introduced for biomedical image segmentation (Ronneberger et al., 

2015) which contains a contracting path and an expansive path as well as several copy and crop paths 

(shown in Figure 5). The contracting path can be seen as an encoder which down-scales the high-

resolution images into coarse ones using convolutional and pooling layers. Oppositely, the expansive 
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path, acting as a decoder, applies ‘up-convolution’ layers for up-scaling to generate high-resolution 

prediction. To prevent losing resolution during up-scaling, the copy and crop paths are built to 

concatenate the same-level features between encoding and decoding. The concatenation is 

performed through skip-connections approach, which is used to skip some layers of the neural 

network and feed the output of one layer as input for other layers.  The U-net architecture allows the 

network to propagate spatial information after down-scaling back to higher resolution layers and 

shows great success in image segmentation tasks. The switch between different resolutions within the 

network can potentially be used to represent scale-interactions that are very important for the 

dynamics of both atmosphere and ocean. 

 

Figure 5 U-Net architecture consists of encoder and decoder layers, which can be connected through skip-connections 

Inception modules:  Szegedy et al. (2015) introduced the GoogLeNet deep neural network, which 

consists of a series of Inception modules (Figure 6). Instead of direct convolutions, each inception 

module contains several convolutions of different sizes applied on the same features, and concatenated 

together at the end of the module. In preliminary research of application A4 on weather and climate 

data, we observe benefits for Inception module variants in convolutional neural networks. 

 

Figure 6 Inception-style module 

Recurrent neural network (RNN):  This architecture represents a directed acyclic of a cyclic graph (for 

feedbacking systems) where, most often, time is used to define an input vector. In addition to the 

temporal ordering RNNs may have an internal state to process variable length sequences of inputs.   

The most prominent realizations of RNNs are Long-Short-Term-Memory (LSTM) and Gated Recurrent 

units (GRU), cf.  Figure 7. The unit is “enrolled” as a tensor for timeslices  x(t),... x(t-N) which serves as 

input to the neural network. RNNs have a huge impact in natural language processing applications and 

appear very attractive for weather applications, if adequate feature engineering has determined 

parameters, as e.g. the length of the timeslice. 
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Figure 7 LSTM (left) and GRU (right) architecture (from  odelling.org: 

https://en.wikipedia.org/wiki/File:Gated_Recurrent_Unit.svg) 

Convolutional LSTM (ConvLSTM): ConvLSTM was introduced in the study of Shi et al. (2015; Figure 8). 

It is built upon the architectures of CNN and LSTM. Their model architecture extends the fully 

connected LSTM encoder-decoder-predictor model introduced in Srivastava et al. (2015) to 

incorporate spatial patterns with the help of convolutional layers in both the input-to-state and the 

state-to-state transition. With that, the ConvLSTM network can capture spatial-temporal correlations 

in the data which is known to be crucial for atmospheric processes. ConvLSTM so far has been applied 

in the problem of images-to-images, also in the W&C prediction studies as baseline models to compare 

with other advanced architectures (Kim et al. 2017; Weyn et al. 2019) . 

 

Figure 8:  Convoluational LSTM architecture: convolutional layers couple with Long-short term memory architecture  

Generative Adversarial Nets: GANs were first proposed by Goodfellow et al. (2014; Figure 19). The 

GAN architecture constitutes a composite model architecture which consists of a generator and a 

discriminator model. The discriminator is trained to distinguish between real and artificially generated 

video sequences. Conversely, the generator gets optimized to fool the discriminator, i.e. it aims to 

produce video sequences that cannot be differentiated from real ones by the discriminator. By training 

both models adversarially, the generator must learn the statistical properties of the underlying data 

and thereby become capable of generating images that look natural.  
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Figure 9: Generative adversarial nets architecture 

DenseNet: Huang et al. (2017) report that convolutional networks can become deeper and more 

accurate if they exhibit shorter paths from the input image to the output. In their paper, Huang et al. 

propose DenseNets (Figure 9) - a convolutional network in which convolutional blocks are densely 

connected to each other. That is, for each block, the features of all the preceding blocks are 

connected directly as inputs. Such densely-connected blocks could be used, in conjunction with, e.g., 

Inception-like modules as blocks, in order to improve accuracy and reduce the memory footprint of 

parameters in neural networks for weather and climate. 

Transformers: Transformers (Vaswani et al., 2017) are sequence transducer networks, which are 

based on the mechanism of attention. Instead of their recurrent neural network predecessors, these 

networks observe the entire sequence at once (subject to masks that induce temporal causality) and 

can learn, for each element in the sequence, how to “attend” to any of the other elements in the 

sequence via learnable weights. Transformers are built out of a series of encoder blocks followed by 

decoder blocks (either of which could be omitted for different purposes), each of which containing a 

multi-head attention layer, capable of attending to multiple criteria at the same time; and a fully-

connected network. These blocks can be adapted to work with other types of data rather than 

sequences of textual elements, e.g., image patches. Transformers and their variants are widely used 

today for translation, image recognition, and text generation tasks, and have shown promise on 

weather models. 

Symbolic regression: Symbolic regression (Quade et al., 2016) searches the space of mathematical 

expressions applied to the target and input variables such that an optimal expression is found fulfilling 

𝑦 = 𝐹(𝒙), where 𝑦 is a target variable, possibly of many dimensions, and 𝑥 is the vector of input 

variables. The function 𝐹 may be complex, and the input variables may be subject or prior 

transformation, e.g. to compute derivatives. A simple subclass of general symbolic regression is the 

conventional linear regression or generalized linear regression schemes. In machine learning, genetic 

programming (Koza 1992) is used to obtain very general representations of the equations, whereby 

the search in function space may involve sophisticated tuning of the search parameters.   

 

4.2 Loss functions 

The network is optimized by the loss function that typically measures the difference between 
predictions and the truth. The choice of the loss function depends on the problem of the applications 
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and the statistical properties of the data. For instance, distance-based loss functions such as Mean 
Square Error (MSE) and Mean Absolute Error (MAE) are widely used for regression problems.  Loss 
functions such as the Continuous Rank Probability Score (CRPS) are adopted for ensemble 
predictions. GAN architectures try to learn the probability distribution of the data. The adversarial loss 
of GAN reflects the distance difference between the distribution of real data and the distribution of 
generated data. In the following, we introduce the loss and evaluation functions in the six applications 
of the project. 

 
 MAE and MSE: The MAE and MSE is computed as follows: 

 
MAE =  

1

𝑛
∑ |�̂�𝑖 − 𝑌𝑖|

𝑁

𝑖 = 1

 
(1) 

 

 
MSE =  

1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)2

𝑁

𝑖 = 1

 
(2) 

Where �̂�𝑖 is the prediction and 𝑌𝑖  are the target values, n is the number of total samples.  

Latitude-weighted MSE: This metric adds a reweighting scheme to the MSE loss. The values are 

given as the mean squared error with a multiplicative weighting function: 

 

 

𝑀𝑆𝐸𝑙𝑤 =
1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)2𝑁

𝑖 = 1 𝐿(𝑖), (3) 

where the function L weights values at latitudes closer to the equator more heavily than values 

further away from the equator. For a vector lat that contains the latitudes at each point 𝑖 (in 

radians), we can define  𝐿(𝑖) =
𝑐𝑜𝑠 𝑙𝑎𝑡𝑖 

∑ 𝑐𝑜𝑠𝑁
𝑗=1  𝑙𝑎𝑡𝑗 

. 

Quantile Score: Quantile score is used for evaluating the probabilistic forecasts (Gneiting and 

Raftery, 2007; Koenker and Bassett Jr, 1978), which is given by: 

Sτ(𝑢) =   {
𝑢(𝜏 − 1),   𝑢 < 0
𝑢 𝜏 ,            𝑢 ≥ 0

 
(4) 

where 𝜏 is quantile level and u is the difference between the quantile forecast and the target.  The 

quantile scores for the three predicted quantiles (10%, 50%, and 90%) are added together to a final 

score.  

SSIM: Structural Similarity Index (SSIM), which is commonly applied to access the perceptual 

similarity between images, measures the similarity between two images based on three features 

(Wang et al., 2004): Luminance [𝑙(𝑥, 𝑥)]𝛼., contrast [𝑐(𝑥, 𝑥)]𝛽 and structure [𝑠(𝑥, 𝑥)]𝛾  in Eq. 5. 

luminance is measured by averaging over all the pixel values for a given image x; contrast taking the 

standard deviation given by Eq. (9) over all pixel values and is defined by Eq. (8); structure features 

compare the predicted and true images given via Eq . (10).  

 𝑆𝑆𝐼𝑀 (�̂�, 𝑦) =  [𝑙(𝑥, 𝑥)]𝛼. [𝑐(𝑥, 𝑥)]𝛽 . [𝑠(𝑥, 𝑥)]𝛾 (5) 
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  𝜇𝑦 =  
1

𝑁
∑ 𝑥𝑁

𝑖=1  (6) 

 
𝑙(𝑥, 𝑥) =  

2𝜇𝑥𝜇�̂�+ 𝐶1

𝜇𝑥
2 + 𝜇�̂�

2 + 𝐶1

 
(7) 

 
𝑐(𝑥, 𝑥) =  

2𝜎𝑥𝜎�̂�+ 𝐶2

𝜎𝑥
2 + 𝜎�̂�

2 + 𝐶2
 

(8) 

 

𝜎𝑥 = [
1

𝑁 − 1
∑((𝑥𝑖 − 𝑢𝑥)2)

𝑁

𝑖 =1

 ]

1
2

 

(9) 

 
𝑠(𝑥, 𝑥) =  

𝜎𝑥�̂� + 𝐶3

𝜎𝑥𝜎�̂�+ 𝐶3
 

(10) 

 
𝜎𝑥�̂� =   

1

𝑁 − 1
∑((𝑥𝑖 − 𝑢𝑥) (𝑥 − 𝜇�̂� )

𝑁

𝑖=1

 
(11) 

Where 𝑌𝑖  are the target values and �̂�𝑖 is the prediction, and 𝛼 > 0, 𝛽 > 0, 𝛾 > 0 are parameters to 

control the relative importance of features.  

CRPS: The Ranked Probability Score (CRPS) is an integral of the square of the difference between the 

Cumulative Distribution Function of the probabilistic predictions 𝐹 and the ground truth 𝑦.  

 CRPS(𝐹, 𝑦) =  ∫  [𝐹(𝑥) − 1𝑥>𝑦]
2

−
𝑑𝑥 

 

(12) 

Adversarial loss: the adversarial loss function in the vanilla GAN architecture consists of two loss 

functions: generator loss and discriminator loss (Goodfellow et al. 2014). GAN uses a minimax 

optimization strategy: to minimize the following equation for generator and maximize for 

discriminator.  

min max (𝐷, 𝐺) =  𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log(𝐷(𝑥))] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺𝑍))] 

  𝐺     𝐷  

(13) 

Where 𝐷(𝑥) is the estimated probability by discriminator that the sample from real data 𝑥 is real; 

𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) is the expected values of all the real data; 𝐺(𝑧) is the generated (fake) data given noise 

𝑧; 𝐷(𝐺(𝑧)) is the estimated probability by the discriminator that the generated (fake) sample 𝐺(𝑧) is 

real.   

Earth Mover distance (Wasserstein GAN):  Instead of predicting a probability to distinguish real data 

from the data created by the generator, the Wasserstein distance can be used to optimize a GAN 

model. Mathematically, it constitutes the greatest lower bound to convert the generated data 

distribution 𝑃𝑔 to the real data distribution  𝑃𝑟  :  

    𝑊(𝑃𝑟 , 𝑃𝑔) = 𝐸(𝑥,𝑦) [|𝑥 − 𝑦|] (14) 

To make the objective tractable, the Kantorovich-Rubinstein duality is exploited  

       𝑊(𝑃𝑟 , 𝑃𝑔) = 𝐸(𝑥~𝑝𝑟)[𝑓(𝑥)] - 𝐸(𝑦~𝑝𝑔)[𝑓(𝑦) (15) 
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where f(x) constitutes the learned approximation of a 1-Lipschitz function with the help of a neural 
network. To fulfil Lipschitz continuity, different techniques are applied. While (Arjovsky et al., 2017) 
suggest clipping the weight resulting from the loss function, (Gulrajani et al., 2017) apply an additional 
gradient penalty that enforces a norm close to 1. Irrespective of the latter technique, the Wasserstein 
Loss carries out a conceptual switch from a discriminator network (classifier for real or generated data) 
to a critic (score the supplied data).  
 

4.3 ML in Weather and Climate applications  

Machine Learning for observations and product generation: Observations can have different 

character: string-valued tweets are rather for classification, whereas real-valued sensor 

measurements are suited for regression. Counting tweets may be translated to numeric values, sensor 

measurement may be transformed into so-called features or observations, which in turn may serve to 

improve weather-based products. Such products may be used to make predictions for the finance, 

insurance, mobile, or energy sectors. Typically, these products transform NWP together with 

observations to location-based, time-dependent information, e.g. a forecast of energy production for 

very short-term (intraday), short term (day-ahead), mid-term (weeks ahead) scales. Typical methods 

involve gradient boosting, RNN and CNN (Giebel and Kariniotakis 2017). The development of further 

products involving weather time-scales is a vibrant area of research and subject of future exploitation 

work.    

Machine learning for data assimilation: Data assimilation is the process of finding the best model 

state that matches recent observations. It is a costly task with many possible areas of interest for the 

application of machine learning. 4D-var is a popular algorithm for data assimilation, with many 

similarities to machine learning (Geer 2021). Within the 4D-var framework researchers used a neural 

network to learn the error correction term within weak-constrained 4D-var or used neural networks 

to learn the model error that was diagnosed within data assimilation offline (Bonavita & Laloyaux 

2020). The incremental 4D-var algorithm requires tangent-linear and adjoint versions of the 

forecasting model to propagate gradients to the initial condition. Hatfield et al. 2021 showed that by 

emulating a nonlinear component using a neural network they could simply derive and use the tangent 

linear and adjoint versions of the neural network within the 4D-var system. 

Machine Learning for parameterization within numerical weather forecasts: Ongoing work has 

shown that parameterization schemes can be emulated by neural networks and that the neural 

network emulators are often much faster when compared to the conventional parameterization 

scheme (for example Chevalier et al., 1998, O’Gorman and Dwyer, 2018, and Chantry et al., 2020). To 

date, these have typically made simplifications to the modelling framework, e.g. simulating an aqua-

planet or using coarse spatial resolution. Beyond learning existing parameterization schemes several 

groups have attempted to learn new parameterization schemes, using coarse-grained high-resolution 

simulations as a truth (Brenowitz et al., 2018, Rasp et al., 2018, Matsuoka et al. 2021). This approach 

promises greater possible benefits, but there are challenges in producing new parameterization that 

can run stably within a numerical weathering model (Brenowitz et al., 2018). An alternate approach 

seeks to nudge lower-resolution simulations towards higher-resolution to correct for incomplete or 

inaccurate parameterization (Watt-Meyer 2021). 
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Machine Learning for Post-processing model output: Methods such as Ensemble Model Output 

Statistics (EMOS) (Gneiting et al., 2005) and Bayesian Model Averaging (BMA) (Raftery et al., 2005) 

currently allow for improvements of the raw ensemble forecast skill. Hamill and Whitaker (2007) show 

initial explorations of those techniques on re-forecast datasets for temperature at 850 hPa (T850) and 

geopotential at 500 hPa (Z500). Advances in neural networks have only recently reached the field of 

ensemble models in weather forecasting, focusing on its application to specific weather stations (Rasp 

and Lerch, 2018). 

Downscaling: Over the last few years, the meteorological domain has started to exploit sophisticated 
deep learning techniques to enhance the spatio-temporal resolution of weather predictions. Inspired 
by the success of sophisticated neural networks for generating super-resolution images in computer 
vision (Mahapatra et al. 2019; Wang, 2021), first studies try to transfer these techniques to the 
meteorological domain.  

For instance, Sha et al. (2020a) applied a U-net architecture to downscale the daily minimum and 
maximum 2m temperature over complex terrain and showed that this approach may outperform 
classical ones. In their follow-up study Sha et al. (2020b), a variant of the U-net was trained to generate 
highly resolved precipitation patterns which also yields better results than a classical method based 
on bias correction and spatial disaggregation.  

Leinonen et al. (2020) suggest a GAN equipped with a Convolutional Gated Recurrent Unit (ConvGRU) 
for downscaling time-evolving atmospheric fields. Their model architecture even allows them to 
generate ensembles which are considered to be beneficial for highly complex, non-linear atmospheric 
processes such as cloud dynamics and precipitation formation. A more comprehensive comparison 
study by Baño-Medina et al. (2020) further manifests that deep learning techniques constitute a 
promising tool to downscale meteorological fields.  
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5 Machine Learning solutions and tools used for the six 

applications 

ML tools have been toughly surveyed in the previous section. The ML solutions used for the six 

applications in the project are summarized in Table 1.  CNN, the CNN variant U-Net, and GAN are the 

main architectures that will be explored. The estimated maximum trainable parameters achieve 10 

orders of magnitudes.  Most of the applications employ distance-based loss/evaluation metrics, i.e., 

MSE, MAE.  Some loss function is particular used for a special problem, i.e. CRPS is for ensemble 

forecasts in A4.  TensorFlow 2.X and PyTorch are the two main DL frameworks, which will be explained 

with more details in Deliverable 2.1. Data parallelization strategy will be tried in the coming studies of 

the six applications with the assistance of Horovod Framework. A customized model parallelization 

strategy will be implemented in AP4. For application A2 we could, however, not yet collect sufficient 

data in the form of Twitter feeds that are selected around the topic of weather and climate 

predictions, as we are still waiting on a response from our application to Twitter to receive such data.  

 

Table 1: Survey of the ML solutions and tools used for the six applications 

AP ML 
solutions  

Estimated 
trainable 
parameters 

Estimated size 
of Tier 2 
Dataset 

Loss function ML tools Distributed 
Training 

1 U-Net, GAN  O(104)-O(10⁸)   ~ 10 TB Quantile score TensorFlow, 
Python 

Data parallelization 

2  - -  ~ 10 TB - TensorFlow2.X, 
PyTorch,  

- 

3 CNN, 
DenseNet 

O(105-106) 

 

 ~ 10 TB MSE TensorFlow 2.X Data parallelization 

4 CNN, 3D-
Unet, 
DenseNet 
Inception 
module 
Transformers
  

 

O(106)-O(1010) ~ 3 TB CRPS, Latitude-
weighted MSE 
variants, SSIM 

PyTorch 1.8 with 
or without 
PyTorch Lightning 

Model /Data 
parallelization 

5 U-Net, GAN, 
and RNN 

O(107)- O(108)  ~ TB MAE, MSE, 
Adversarial loss, 
Earth Mover 
distance 

TensorFlow v2.3.1 
or v2.5 with Keras 
API  

Data parallelization 

6 RNN, GAN, 
CNN, 
Symbolic 
regression 

O(103)- O (105)   ~ GB - ~TB MAE TensorFlow2 or 
PyTorch 

Data parallelization 
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6 Conclusion  

MAELSTROM deliverable 1.2 provides the survey of requirements of ML solution and tools for the six 

applications. Importantly, the comprehensive review of ML and DL architectures and ML in W&C 

applications are given in this report. The tools used for the six applications are provided, which are 

essential information for the interaction between work package 1, 2 and 3 within this project.  
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