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1 Executive Summary 

This deliverable provides background information on the first datasets for the six MAELSTROM 

applications that are now available for download online. For all but one of the datasets, a Jupyter 

notebook is available that provides a recipe on how to download the data, how to train a vanilla 

machine learning solution for the given problem, how to evaluate the quality of the solution, and 

how to plot some of the resulting quantities. 

The datasets that are available have also been unified as much as possible with a common 

framework for data loading -- using the so-called CliMetLab library -- and a common way to store the 

data in S3 buckets. 

While the first version of the datasets is now available at month five of the project, the datasets will 

still develop further over time and the machine learning solutions will be upgraded as they become 

more-and-more customised to the needs of the applications. 
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2 Introduction 

2.1 About MAELSTROM 

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and 

solution accuracy. Customised compute systems will be designed that are optimised for application 

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward needs of weather and 

climate applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with compute system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the 

workflow of weather and climate predictions including the processing of observations, the 

assimilation of observations to generate initial and reference conditions, model simulations, as well 

as post-processing of model data and the development of forecast products. For each application, 

benchmark datasets with up to 10 terabytes of data will be published online for training and 

machine learning tool-developments at the scale of the fastest supercomputers in the world. 

MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning 

applications on supercomputers in the future. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

To establish and publish a first version of the MAELSTROM datasets for the MAELSTROM 

applications for use in subsequent studies and MAELSTROM performance benchmarks; to provide an 

easy access point to download and use the datasets via Jupyter notebooks; to unify the datasets as 

much as possible.  

 

2.2.2 Work performed in this deliverable 

The first versions of the datasets are established and available publicly via an S3 data bucket. A 

description of the datasets is provided. Furthermore, a simple Jupyter notebook is provided that 

serves as an example of how the data can be downloaded and loaded into a machine learning 
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environment. A vanilla machine learning solution is also prepared that serves as an example of how 

tools should be trained and a cost function for the evaluation of the quality of the solution is given.   

 

2.2.3 Deviations and counter measures 

There are no significant deviations from the planned contributions of the deliverable. We have 

delivered usable versions of five of the MAELSTROM applications that are already based on a 

common data loading framework (CliMetLab) and available in sufficient size for meaningful 

performance testing. For application A2 we could, however, not yet collect sufficient data in the 

form of twitter feeds that are selected around the topic of weather and climate predictions, as we 

are still waiting on a response from our application to Twitter to receive such data. The dataset will 

be added as soon as the data is available. 
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3 A description of the six applications and the datasets 

3.1 A1: Blend citizen observations and numerical weather forecast 

Motivation and Description:  

Public weather forecast providers strive to deliver forecasts that are accurate and tailored to the 

specific locations of their end users. Although weather models are constantly improving, large errors 

in models are still common. For example, in mountainous Norwegian terrain, forecasted 

temperatures can have errors exceeding 10°C, especially in winter-time inversion conditions. 

Forecast providers, such as MET Norway, therefore rely on machine learning to reduce these errors. 

The A1 dataset contains high resolution weather data for the Nordic region and forms the basis for 

the operational forecasts on the weather app Yr (https://www.yr.no). 

To produce high resolution forecasts, machine learning models need high resolution target fields for 

training. An important emerging source of weather measurements is networks of citizen weather 

stations. These off-the-shelf devices owned and maintained by private individuals typically deliver 

weather measurements in near real-time and due to their popularity offer high resolution 

information on current weather conditions. The target field in the A1 dataset is constructed from 

measurements from Netatmo’s network of citizen weather stations. The network density is roughly 

two orders of magnitude higher than the density of the network of conventional stations operated 

by MET Norway. The observations have been quality controlled and combined with model data to 

produce a best estimate of the weather for each hour in the past, to make them easier to use for the 

training of machine learning models. 

The prediction task is to generate deterministic temperature and/or hourly precipitation forecasts 

(treated as a median of the forecast distribution) together with a 10-90% confidence interval on a 

1x1 km grid. The task could easily be extended to any number of quantiles and even a complete 

quantile distribution function, but the three chosen quantiles are used in the visualization of 

temperature and precipitation forecasts and their uncertainty in the Yr app. 

Input and output data:  

The dataset contains two predictands, 2m temperature and hourly precipitation. Both datasets 

share most of the same predictors. The datasets contain gridded forecasts on a 1x1 km Lambert 

conformal grid (Lambert 1772) covering the Nordic countries. The available predictors are: 

Predictor name Unit Has leadtime? 

2m temperature °C Yes 

Cloud area fraction 1 Yes 

Precipitation amount mm Yes 

10m x wind component m/s Yes 

10m y wind component m/s Yes 

2m temperature bias previous day °C Yes 

2m temperature bias at initialization time °C No 
Table 1: A1 predictors for 2m temperature and hourly precipitation forecast 

https://www.yr.no/
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The temperature dataset contains all predictors whereas the precipitation dataset contains the first 

five. The first five predictors are forecast fields from the weather model. The original resolution is 

2.5 km, but these have been downscaled using nearest neighbours to a 1 km grid. The “2m 

temperature bias previous day” predictor is the difference between the weather model’s forecasted 

air temperature and the target field for the previous day at the same time of day. “2m temperature 

bias at initialization time” is the error of the weather model at initialization time. These predictors 

have been shown to be important predictors of forecast error in the future (Nipen et al. 2020).  

The target field is a gridded best estimate of 2m temperature (units °C) and hourly precipitation 

(units mm), and is produced by a combination of observation data sources and gridded model data. 

It is provided on the same grid as the predictors. 

Dataset structure: 

Data is stored as one forecast run (record) per NetCDF file and each file includes predictors and the 

target fields. For a given file, the predictor field has 3 dimensions (x, y, and predictor). Dimensions x 

and y describe the horizontal space in the Lambert conformal projection and have bounds of -11.76 

to 41.76 and 52.30 to 73.86 in the longitudinal and latitudinal dimensions respectively. To 

reasonable approximation this horizontal grid can be considered equispaced and thus suitable for 

image-based machine learning approaches. More advanced approaches might incorporate more 

knowledge of the grid structure. The predictor dimension combines predictors and their values for 

different forecast lead times. With the exception of the “2m temperature bias at initialization time” 

predictor, all predictors have values for each lead time. The predictor dimension is a concatenation 

of all predictors for different lead times.  

The target field has 3 dimensions (x, y, and leadtime). Additionally, the dataset contains static 

metadata variables, such as the latitudes, longitudes, and altitudes of the gridpoints of the 1 km grid; 

the lead times in hours; and the name of the predictor and its units that each index in the predictor 

dimension corresponds to. 

Two tiers will be provided, with the following specifications: 

Metric Tier 1 Tier 2 

Data size 5 GB 10 TB 

Grid size 128x128 2321x1796 

Spatial resolution 1 km 1 km 

Lead times 8 (0, 6, 12, … 42) 61 (0, 1, 2, … 60) 

Time period 2017-2020 2017-2020 

Number of predictors 7 7 

Predictor size (time, y, x, predictors) 1457 * 128 * 128 * 49 1457 * 2321 * 1796 * 428 

Target size (time, y, x, leadtimes) 1457 * 128 * 128 * 8 1457 * 2321 * 1796 * 61 
Table 2: A1 datasets for 2m temperature and hourly precipitation forecast 

Tier 1 is a subset of Tier 2, containing a much smaller spatial extent and fewer lead times, and is 

small enough for testing on a laptop. 

Loss function: For evaluating the temperature forecasts, use the quantile score (Koenker and 

Bassett, 1978; Gneiting, T., and A. E. Raftery, 2007) given by: 
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Sτ(𝑢) =   {
𝑢(𝜏 − 1),   𝑢 < 0
𝑢 𝜏 ,            𝑢 ≥ 0

 

where  𝜏 is quantile level and u is the difference between the quantile forecast and the target. In this 

application, the quantile score for the three predicted quantiles (10%, 50%, and 90%) are added 

together to a final score. For precipitation, a new score that better takes into account desired 

temporal aggregation properties of the scenario will be developed. 

Typical machine learning solutions: The current solution for temperature used on Yr is a simple 

linear regression between a subset of the parameters (“Forecasted 2m temperature”, “2m 

temperature bias previous day”, and “2m temperature bias at initialization time”). A simple vanilla 

solution using all predictors is demonstrated in the MAELSTROM-Yr Jupyter notebook. 

3.2 A2: Incorporate social media data into the prediction framework 

Motivation and description 

This application aims to harvest weather related data from social networks and to process it into a 

qualitative, geo-localized information stream in near real time. 

For this, one can use three types of information: 

1. citizen-sensing (passive, indirectly self-reported or unsolicited information) 

2. crowd-sensing (active contributions) 

3. tweeting sensors (local weather sensors which are using Twitter as a low-cost 

 infrastructure) 

The plan for this application is to first develop text mining and processing tools for automated 

classifications of unstructured text. After that, automated classifiers for detection and severity of 

predefined climate indices need to be defined. 

The information from the three types of sensing described above can be transformed into qualitative 

maps representing different climate/weather indices while focusing on dominant infrastructures in 

Europe (e.g. airports). This data can be compared to weather predictions of ECMWF at the same 

locations but for different lead times using machine learning. Finally, the IFS forecasts would be bias 

corrected locally to the needs of the end-users. 

Input and output data 

Weather forecast data 

For information about the available weather data see the description for application 6 as these two 

applications have a lot of overlap in their required weather data. To avoid data doubling those two 

applications will thus use the same data. 

Twitter data 

As stated in section 2.2.3, we were not able to collect twitter for this deliverable so far, hence no 

description of the data is possible. It will be added as soon as the data is available. 
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Loss function and quality measures      

As one of the first steps the work for this application will be concerned with the classification of 

unstructured text data with regard to extreme weather situations. Appropriate loss functions could 

thus be the Cross Entropy Loss or the Hinge Loss. 

Details will be added when data is available, and the example machine learning notebook can be 

provided. 

 

3.3 A3: Build neural network emulators to speed-up weather forecast models and 

data assimilation 

Motivation and description: Due to limited resolution, not every important process can be 

represented explicitly within weather and climate models. The processes that cannot be resolved are 

represented by so-called parametrisation schemes that mimic sub-grid-scale dynamics based on the 

physical fields that are resolved. Parametrisation schemes for models of the atmosphere represent 

radiation, clouds and convection, turbulence, and gravity wave processes and form a significant part 

of weather and climate models both in terms of the complexity of the model code and 

computational cost.   

It has been shown that parametrisation schemes can be emulated by neural networks and that these 

emulators are often much faster when compared to the conventional parametrisation scheme (for 

example Chevalier et al. 1998, Brenowitz et al. 2018, O’Gorman and Dwyer 2018, Rasp et al. 2018, 

Chantry et al. 2021). In this task, the neural networks learn a mapping between input and output 

fields of the conventional schemes. Furthermore, neural network emulators are easier to port to 

heterogeneous hardware due to the availability of machine learning libraries such as Tensorflow or 

PyTorch. In contrast, as conventional parametrisation schemes, typically written in Fortran code, are 

difficult to port to accelerators such as Graphical Processing Units (GPUs). Finally, the neural network 

emulators can also be used to generate tangent linear and adjoint model code that is required for 

4DVar data assimilation -- as used at ECMWF -- but typically laborious to develop for parametrisation 

schemes (Hatfield et al. 2021). 

Physical parametrisation schemes are typically solved in a columnar approach, i.e. a column of input 

data within an atmosphere model is used to predict the impact of the physical process for each 

vertical level in the column. This makes the problem a one-dimensional problem that is solved for 

each horizontal grid-point on a global grid.  The physical parametrisation schemes provide 

contributions to the “tendencies'' that are used to update the prognostic model fields. 

The first version of the benchmark dataset of A3 will provide input and output data of the ecRad 

Tripleclouds radiation scheme (Hogan and Bozzo 2018) as it is used for operational weather 

predictions at ECMWF. The dataset can therefore be used to learn the Tripleclouds radiation 

scheme. However, as the ecRad scheme is available as open source software 

(https://github.com/ecmwf/ecrad), the dataset can also be used to generate output data for more 

costly versions of the ecRad, such as the SPARTACUS scheme that is taking the three dimensional 

cloud effects into account but is currently too expensive for operational weather predictions (Hogan 

https://github.com/ecmwf/ecrad
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et al. 2016, Meyer et al. 2021). For this, ecRad could be used to generate new output fields for 

training that are based on SPARTACUS rather than Tripleclouds. 

Additionally, the dataset also includes input and output pairs of the gravity wave drag 

parametrisation scheme. The emulation of the gravity wave drag scheme was already investigated in 

Chantry et al. 2021. 

Input and output data: All data is diagnosed from simulations of the weather forecast model of 

ECMWF -- the so-called Integrated Forecasting System (IFS). We run forecasts with the IFS model 

regularly saving the global input and output data of the two parametrisation schemes. For the 

radiation parametrisation this data is computed on a 40km grid (TL511), resulting in 271,360 samples 

of grid columns for each timestep. Vertical columns can be treated independently but may be 

batched together at training or inference time. The IFS model is run every 30 days, for 30 days, 

saving the radiation inputs and outputs every 25 hours (model 125 timesteps). Our training dataset 

comprises one year (2020), totalling 271,360 (grid points) x 29 (timesteps) x 13 (forecasts) = 

102,302,720 training columns. An additional 31,477,760 columns are provided for testing from four 

forecasts in 2019. For the emulation of the non-orographic gravity wave drag scheme, the details 

can be found in Chantry et al. 2021. 

The input data consists of physical fields that are passed into the radiation or gravity-wave-drag 

schemes within simulations (see Tables 1 & 2). For radiation, the output fields are fluxes of short and 

long wave radiation between vertical levels as well as at the top and bottom of the atmosphere 

given in [W m-2]. Next to the real fluxes between levels, the direct radiation -- that is calculating the 

radiation in the absence of clouds -- is also calculated. However, the quantity that is most important 

for the quality of IFS simulations is the heating rate, which is calculated from the fluxes as the 

difference of incoming and outgoing radiation fluxes per vertical level and at the surface. The 

heating rate is calculated as the pressure derivative of net heating fluxes, 

𝐻𝑅 =  −
𝑔

𝑐𝑝
 
𝑑(𝐹𝑙𝑢𝑥𝑢𝑝 − 𝐹𝑙𝑢𝑥𝑑𝑜𝑤𝑛)

𝑑𝑝
 

where g is the gravitational force and cp is the specific heat of dry air, taken to be constant at 1004 J 

kg-1 K -1. As such, the heating rate will be weighted by a term that depends on pressure which varies 

by several orders of magnitude between the top and bottom of the atmospheric column.  

Field Name Location Unit 

Specific humidity Full level 1 

Ozone, CO2, N2O, CH4, O2, CFC11, CFC12, HCFC22, 
CC14 volume mass mixing ratio 

Full level 1 

CO2 volume mixing ratio Full level 1 

Cloud fraction Full level 1 

Gridbox-mean liquid water mixing ratio Full level 1 

Gridbox-mean ice water mixing ratio Full level 1 

Ice effective radius Full level 1 

Cloud overlap parameter Full level 1 

Fractional std of cloud optical depth Full level 1 

Inverse of cloud effective horizontal size Full level m-1 

12 types of aerosol mass mixing ratios Full level  
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Pressure Half level Pa 

Temperature Half level K 

Solar irradiance Surface W/m2 

Longitude and latitude Surface Degrees 

Skin temperature Surface K 

Cosine of solar zenith angle Surface 1 

Six bands of short-wave albedo Surface 1 

Six bands of direct short-wave albedo Surface 1 

Two long-wave emissivity Surface 1 
Table 3: A3 predictors for the radiation challenge. There are 137 full model levels, 138 “half levels” that are 
defined between the full levels, at the top of the atmosphere, and at the surface, and surface inputs which are 
scalars. 

For the gravity wave drag emulation, the input fields are physical fields from IFS simulations (see 

Table 4). The output fields are the influence of gravity waves on the tendencies of wind in zonal and 

meridional direction for each vertical level. Both inputs and outputs have been preprocessed into 

single columns in the order described by the table and text respectively.  

Field Name Location Unit 

Zonal velocity Full level m/s 

Meridional velocity Full level m/s 

Temperature Full Level K 

Surface pressure Surface Pa 

Surface geopotential Surface m^2s-2 
Table 4: A3 predictors for the gravity wave drag challenge. 

Data structures: 

Dataset tiers will be created by providing different time windows of data. 

■ Tier-1 will be a short time window to show the data structure summing up to ~3GB of data. 

■ Tier-2 will cover 2 years, allowing for a complete year as training data with a second year for 

testing/validation data summing up to 3TB of data. 

For Tier-1, the data will be provided in NetCDF format. For Tier-2, the data will be provided in 

NetCDF with a TFRecord version being provided for the radiation dataset. Preliminary tests found 

the shuffled read performance of TFRecord was vastly superior to that of NetCDF (even when using 

the dask package; https://dask.org/), however NetCDF maintains greater data structure so might 

provide added value for data analysis. Both tiers and formats will be easily accessed using CliMetLab. 

For the NetCDF data, no normalisation is provided. For the TFRecord loader, a mean & standard 

deviation normalisation across the training data (2020) has been calculated, but users are free to use 

a different normalisation approach. 

Loss function and quality measures: As a regression problem, the mean-squared-error is the main 

loss function that will be used. The quality can also be assessed by visual inspection of the vertical 

flux or heating rate profiles, in particular when focussing on the worst profile during testing. To 

define acceptable accuracy is challenging. The ultimate test is to check whether the emulator is 

causing any degradation to the accuracy of the whole IFS forecast coupled to the emulator, but this 

https://dask.org/
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is only possible to assess in online testing that are expensive as they require to run the full IFS. 

Previous modelling attempts have found that smoothness of the heating rate profiles is important 

for stability when connected to the IFS model. As a result, we recommend users use the minimal 

outputs approach, and predict the heating rates and three boundary fluxes for each wavelength (an 

example of this is provided in the example notebook). The alternate approach, to predict the 

columnar fluxes and use the equation above to derive the heating rate would have to be extremely 

careful to incorporate this smoothness into the loss function. In a recent paper attempting to learn 

the “3D” effects of radiative heating the authors established the mean differences between the 

TripleClouds scheme and Spartacus schemes of ecRad (Meyer et al 2021). They found a mean 

absolute difference of O(1 W/m2) for the boundary fluxes and O(10-7K/s) for the heating rates. These 

can act as a guideline for researchers looking to establish acceptable errors in any machine learning 

emulator. 

Typical machine learning solutions: Previous studies have often used very simple architectures, e.g. 

fully-connected neural networks, sometimes with bespoke final layers to ensure conservation 

properties (e.g. a sum over the column of outputs). Our current solution for gravity wave drag uses 

five hidden layers with O(10^5) degrees of freedom in the system, but other pieces of physics might 

require more complex solutions. There is certainly still room for more intelligent network design to 

improve efficiency. The parametrisation emulation problem tries to find a network that is as 

accurate as possible while generating the lowest computational cost possible. It is useful to 

understand how errors of the neural network emulators reduce if the cost of the neural networks 

increases. Once this has been established, a subset of the "best" models, i.e. optima in the cost/loss 

space, can be tested in online simulations that are coupled to the IFS model. 

Inference timing benchmark: The cost for inference of the existing scheme can be measured, but is 

currently run on a CPU architecture, making fair comparisons to the machine learning emulator 

challenging (Chantry et al. 2021). For the radiation dataset, 16960 columns take approximately 60 

seconds on a single core of an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz, equivalent to 3.5ms per 

profile. 

 

3.4 A4: Improve ensemble predictions in forecast post-processing 

Motivation and description: To be useful, weather forecasts are not only required to provide the 

most likely future scenario, but are equally required to produce the probability of specific weather 

events. To get estimates of probability distributions for predictions, weather forecast centres 

typically run ensemble simulations that perform a number of simulations in parallel, with each 

simulation being perturbed by either a change in initial conditions and/or by adding a stochastic 

forcing to the model (Berner et al. 2017).  

The ENS10 dataset is designed to help the development of machine learning tools to improve 

ensemble predictions via post-processing. It consists of the model output data of ECMWF "hindcast" 

experiments. These are ensemble forecasts with 10 ensemble members that are spread over 20 

years (1998-2017) with two forecasts per week.  
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Input and output data: The dataset contains all 10 ensemble members on a 0.5-degree 

latitude/longitude grids at forecast lead times 0/24/48 hours. Parameters in the dataset are listed 

below.  

Field Name Location Unit 

Sea surface temperature Surface K 

Total Column Water Surface kg/m2 

Total column water 
vapour 

Surface kg/m2 

Convective precipitation Surface m 

Mean sea level pressure Surface Pa 

Total cloud cover Surface 1 

10m U wind component Surface m/s 

10m V wind component Surface m/s 

2m temperature Surface K 

Total precipitation Surface m 

Skin temperature at the 
surface 

Surface K 

U wind component 10/50/100/200/300/400/500/700/850/925/1000 hPa m/s 

V wind component 10/50/100/200/300/400/500/700/850/925/1000 hPa m/s 

Geopotential 10/50/100/200/300/400/500/700/850/925/1000 hPa m2/s2 

Temperature 10/50/100/200/300/400/500/700/850/925/1000 hPa K 

Specific humidity 10/50/100/200/300/400/500/700/850/925/1000 hPa 1 

Vertical velocity 10/50/100/200/300/400/500/700/850/925/1000 hPa Pa/s 

Divergence 10/50/100/200/300/400/500/700/850/925/1000 hPa 1/s 
Table 5: A4 predictors and predictands. 

A tier-1 version of the dataset (ENS5-mini) is additionally provided. It is a 9.5 GB subset of ENS10, 

which only contains the pressure level data and parameters (i.e., surface data is omitted). This 

dataset is spatially cropped over Europe (40-60° N, 0-40° E), temporally cropped to the first ten years 

(1998-2007), contains only 0h/24h forecast lead times, and comprises a subset of 5 ensemble 

members. 

Dataset structure:  The dataset is grouped by day-of-year (i.e., a single date contains all 20 years of 

predictions), where each date contains three steps: 0, 24 and 48 hour lead time. Thus, files contain 

three days at a time. 

In every file, there are 6 dimensions of data (in this order): ensemble member, time (year offset 

from 1998), forecast lead time (0h, 24h, 48h), pressure level, latitude, and longitude. 

Loss functions and quality measures: To gain an understanding of the forecast skill of the combined 

ensemble predictions, the Continuous Ranked Probability Score (CRPS) measure (Hersbach 2000) is 

used. CRPS is the integral of the square of the difference between the Cumulative Distribution 

Function of the probabilistic predictions F and the ground truth y, as shown in the following formula: 

CRPS(𝐹, 𝑦) = ∫ [𝐹(𝑥) − 1𝑥>𝑦]2𝑑𝑥
∞

−∞
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Other loss functions that can be used are Mean Squared Error (MSE), latitude-weighted MSE 

variants, or Structural Similarity (SSIM, Wang et al. 2004). 

Typical machine learning solutions: Methods such as Ensemble Model Output Statistics (EMOS) 

(Gneiting et al. 2005) and Bayesian Model Averaging (BMA) (Raftery et al. 2005) currently allow for 

improvements of the raw ensemble forecast skill. Hamill and Whitaker (2007) show initial 

explorations of those techniques on re-forecast datasets, also used in our work, for temperature at 

850 hPa (T850) and geopotential at 500 hPa (Z500). Advances in neural networks have only recently 

reached the field of ensemble models in weather forecasting, focusing on its application to specific 

weather stations (Rasp & Lerch 2018). We expand on these works by applying DNNs on improving 

the forecast skill for global predictions, specifically extreme weather forecasts, while reducing their 

computational cost.  

3.5 A5: Improve local weather predictions in forecast post-processing 

Motivation and Description:  

The benefits of accurate weather predictions are far-reaching and range from direct economic 

revenues, e.g. in agriculture or the renewable energy sector, to the prevention of socioeconomic 

losses due to high-impact weather. While these benefits outweigh by far the expense to sustain a 

global observation network of the atmosphere and to run numerical weather prediction (NWP) 

models (Lazo et al., 2009 and Bauer et al., 2015), there is still a gap between the capability of 

contemporary NWP models and the economic requirements on the spatio-temporal resolution of 

such forecasts. Global and regional models operate nowadays with grid spacings in the 𝒪(1-10 km). 

At the same time accurate predictions are demanded at even finer spatial scales (𝒪(100m-1km)).  

To circumvent the computational burden and shortcomings of running numerical models at higher 

and higher spatial resolution (e.g. applicability of parameterization schemes), statistical downscaling 

methods have been developed in the meteorological domain over the last three decades. These 

methods map the model output depicting the atmospheric state at larger scales to a tailor-made 

prediction at local scale. Following Wilby and Wigley, 1997, classical statistical downscaling methods 

can be categorized into regression methods, weather typing schemes and stochastic weather 

generators. Extensive reviews on these are provided e.g. in Wilby et al., 2004, Maraun et al., 2010, 

Maraun and Widmann, 2018.  

Meanwhile, the application of neural networks (e.g. Liu et al, 2008) and of multi-objective genetic 

programming (Zerenner, 2017) have also proven success in the domain of statistical downscaling. 

Over the last few years, the meteorological domain has started to exploit sophisticated deep 

learning techniques to enhance the spatio-temporal resolution of weather predictions. Inspired by 

the success of sophisticated neural networks for generating super-resolution images in computer 

vision (e.g. Mahapatra et al. 2019, Wang et al. 2019), first studies try to transfer these techniques to 

the meteorological domain. 

In AP5, deep neural network architectures for super-resolution from computer vision are adopted 

and fine-tuned for statistical downscaling in meteorology. As a starting point, downscaling of 2m 

temperature which inhibits a high spatio-temporal variability on different scales is targeted. With 
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increasing complexity of the developed network architecture, downscaling of other meteorological 

variables will be probed as well. 

Input and output data:  

At the first stage, a real downscaling application is imitated by coarsening the forecasts of an 

operational NWP model and training the neural network to recover the fine-scaled information 

which gets lost during the coarsening procedure. Here, we choose the IFS HRES model that is run 

operationally at ECMWF. To minimize the inclusion of model forecast errors, analysis data (00 and 

12 UTC) and data from the near-short term forecast range (up to 12 hours) will be used allowing us 

to retrieve hourly gridded atmospheric data for the whole day. 

The model data is given onto a regular latitude-longitude grid with 𝛥𝑥 = 0.1° which constitutes the 

objective of the downscaling application at hand. Since we focus on downscaling over complex, 

heterogeneous terrain, we choose Central Europe as the target region and slice the data to a domain 

consisting of 128x96 grid points in zonal and meridional direction, respectively. With this, a domain 

between 4°E to 16.7°E and 45°N to 54.5°N is covered.  

The above-mentioned coarsening of the model data is then undertaken by performing conservative 

remapping onto a 0.8°-grid corresponding to a resolution reduction factor of eight. While this step 

removes the fine-scaled information from the data, the model architecture chosen here (see below) 

requires that input and output data are provided on the same grid. Thus, the coarsened model data 

is remapped back on the target resolution (𝛥𝑥 = 0.1°) via bi-linear interpolation. It is noted that the 

final step to produce the input data does not recover any fine-scaled information at spatial 

resolution smaller than 0.8°. 

All remapping steps are thereby undertaken with special consideration on the meteorological 

quantity at hand. In our case, the application targets downscaling of the 2m temperature 

𝑇2𝑚 = 𝑇(𝑧1 = 2𝑚). To ensure energetic consistency during the remapping procedure for this 

exemplary quantity, the dry static energy 𝑠 is computed beforehand with the help of 

𝑠 = 𝑐𝑝𝑑𝑇(𝑧1 = 2𝑚) + 𝑔(𝑧𝑠𝑓𝑐 + 𝑧1) 

where 𝑐𝑝𝑑 denotes the specific heat capacity of dry air, 𝑔is the gravitational constant and 𝑧𝑠𝑓𝑐stands 

for the surface elevation. 

The dry static energy is approximately conserved for dry-adiabatic processes and therefore ensures 

that no extra energy is added due to the remapping. Provided that the surface elevation 𝑧𝑠𝑓𝑐 is also 

remapped, 𝑇2𝑚 can be computed from the remapped dry static energy by rearranging the above 

equation.  

At a later stage, the ERA5-reanalysis data (grid spacing 0.3°) will be used as input data to approach a 

real downscaling approach. Since the underlying numerical model constitutes a frozen version of the 

IFS model run at coarser resolution (𝛥𝑥 ≃ 25km), this data is considered to be a proper candidate. 

Besides, other consistent modeling systems such as the NWP forecast chain operating at the German 

Weather Service DWD may be considered as well. 
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Similar to the other applications in MAELSTROM, A5 will provide a two tier datasets. Tier-1 dataset is 

limited in the number of variables and time steps offered and thus is designed to be fed into a rather 

simple DL model architecture.  

In particular, the 2m temperature and surface elevation obtained from the IFS HRES model at its 

analysis time steps (00 and 12 UTC) between 2016 and 2020 are used. Since no further information 

on the atmospheric state is provided, a seasonal filtering for the summer half of the year defined 

between April and September is applied. Thus, the total dataset comprises 915 samples for 00 UTC 

and 12 UTC, respectively. Note, that the near-surface layer of the planetary boundary layer is 

typically stably stratified (well mixed) at 00 UTC (12 UTC), easing the downscaling task for T2m when 

separated models are trained for analysis time step.  

Tier-2 dataset will complement the first data collection by adding the forecasted fields for the first 

11 hours and by including more informative meteorological variables. While a detailed selection of 

predictors is not available yet, proper examples are the 850hPa temperature, the cloud cover and 

the sensible and latent enthalpy fluxes at the surface. A more complete overview on the potential 

predictors is provided in Table 6.  

Field Name Location Unit 

2m temperature (input/output) 2m K 

Surface elevation (input/[output]) surface m 

Temperature on pressure levels (input) 850 hPa, 925 hPa K 

Geopotential height (input) 500hPa, 850 hPa, 925 hPa m2/s2 

(u,v)-wind components (input) 10m, 850 hPa, 925 hPa  m/s 

Total cloud cover (input) - 1 

Low, middle and high cloud cover (input) - 1 

Boundary layer height (input) - m 

Large-scale precipitation (input) surface m 

Convective precipitation (input) surface m 

Sensible heat flux (input) surface J/m2 

Latent heat flux (input) surface J/m2 

Volumetric soil water (input)  Ground layer 1+2 m3/m3 

Soil type (input) surface - 

Leaf area index high vegetation (input) surface m2/m2 

Leaf area index low vegetation (input) surface m2/m2 
Table 6: A5 input fields for the statistical downscaling of 2m temperature.  
Data variables used in the tier-1 dataset are given in black, while potential predictors of the tier-2 dataset are 
indicated in grey. Note that the predictors can be obtained from the IFS HRES and from the ERA5-reanalysis 
dataset. The 2m temperature also serves as the objective variable (predictand). Similar to Sha et al., 2020a, the 
surface elevation may serve as an objective to enable transfer learning to other target regions (see exemplary 
application of the tier-1 dataset). 

Data structures: 

As mentioned above, dataset tiers will be created by providing different time windows of data and 

different input variables  
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■ Tier-1 will use only two input variables from the analysis times of the IFS HRES model (00 

UTC and 12 UTC). The data is limited to the summer season (April-September) and is 

provided in netCDF-files, each carrying one month of data. One data file is 24 MB large, 

summing up to 687 MB in total.  

■ Tier-2 will cover the whole year and the whole day at an hourly frequency. Since the number 

of predictor variables will be increased, this dataset will be at least larger by a factor 100 

compared to Tier-1. Similar to Tier-1, data will be stored in netCDF-files, but as daily files. 

Additionally, TFrecords will be provided. At a later stage, other model data such as ERA-5 will 

be added increasing the data volume to terabyte scale. 

Both datasets will be stored and provided via the ECMWF cloud. While Tier-1 allows for a calculation 

of the normalization parameters with all data in memory, these parameters will be shipped along 

with the Tier-2 dataset. As a default, z-score normalization will be applied, but other normalization 

techniques such as min-max scaling will be enabled (and tested) as well. Tier-2 is also distributed in 

TFrecords-format for performance reasons since this format allows for optimized data streaming 

into DL model architectures built with TensorFlow. 

Typical ML solutions:  

A first comprehensive comparison study by Baño-Medina et al., 2020 examined basic convolutional 

neural networks for a few meteorological fields. While they conclude that deep learning techniques 

constitute a promising tool for statistical downscaling, more sophisticated deep convolutional 

networks have already been applied as well. 

The U-net architecture was originally proposed for biomedical image segmentation (Ronneberger et 

al., 2015). However, since it is fully based on convolutional layers, it is capable of extracting spatial 

features. Therefore, it has become a popular choice in super resolution tasks of computer vision (see 

Yao et al., 2018, Lu and Chen, 2019, and Wang, 2019).  

The applicability of the U-net architecture for statistical downscaling of meteorological data has 

been demonstrated in Sha et al., 2020(a,b). Since their particular architecture for daily maximum/ 

minimum temperature comprises 3.5 million trainable parameters, it constitutes a relatively light- 

weighted neural network. Therefore, this architecture is chosen as the starting point in AP5 and 

provided as an example architecture in scope of the tier-1 dataset. 

At later stages, the U-net will be further developed by incorporating more model variables. Instead 

of predicting the diurnal minima and maxima of 2m temperature, an hourly downscaling product will 

be targeted requiring the depiction of the state of the planetary boundary layer. Thus, the size of the 

deployed U-net will grow, while the standard L1-loss will still be a reasonable choice for 

optimization.  

However, with increasing intricacy of the downscaling task, it is expected that the U-net will also 

suffer from shortcomings due to the applied pixel-wise loss function. To circumvent this, it will be 

complemented with a Generative Adversarial Network architecture, abbreviated by U-net-GAN (see 

e.g. Wang, 2021). The adversarial loss applied with GANs encourages the model to learn the 

underlying statistical properties of the data. However, stabilizing the training iteration and 
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preventing the model from mode collapse are common issues met with GAN. To mitigate the latter, 

the first Wasserstein distance as an additional loss term is an appealing candidate (Arjovsky, 2017). 

Since the near-surface temperature exhibits a clear diurnal cycle (see Zhang et al., 2004, Holtslag et 

al., 2013), recurrent units will be added to the model architecture in the future as well. With this, the 

hourly 2m temperature over one day is interpreted as a sequence where recurrent cells such as 

Long-Short-Term Memory cells are considered to enhance the temporal coherence of the 

downscaled product. 

Note that more sophisticated DL model architectures also enable us to test the downscaling 

approach on other, more complex meteorological fields such as precipitation. Besides, the GAN part 

enables the generation of ensembles.  

Typical training times:  

The basic U-net architecture shipped along with the tier-1 dataset can be trained within 5 seconds 

per epoch using a Nvidia P100 GPU. Using 30 epochs to optimize the model parameters, the total 

training time is well below three minutes. However, especially the introduction of recurrent layers 

increases the computational costs, so that a total training time of several hours to days is expected 

at later stages. 

 

3.6 A6:  Provide bespoke weather forecasts to support energy production in Europe 

Motivation and description   

One of the most important challenges to mitigate climate change is to increase the generation of 

renewable energies. In times of weather situations with low wind and/or solar radiation the 

production of wind and solar power production has to be complemented by energy production from 

e.g. biogas plants and storage capacities. An optimal efficiency throughout all energy providers is 

important here in order to allow for a large market share of renewable energy. This requires 

accurate forecasts for energy generation that rely heavily on weather predictions, local 

measurements, and real-time production data from wind turbines and solar panels. However, for 

excellent forecasts, weather predictions need to be available for the exact location of solar panels or 

wind turbines. This is not possible to achieve with conventional weather prediction models, even 

with exascale HPC infrastructure, since the resolution is not high enough to picture local conditions 

such as topography or land-use. 

This application aims to significantly improve predictions of power production from renewable 

energy sources in order to optimise the usability of renewable energy. Possible users of the 

improved predictions are power producers, trading companies, grid operators and even whole 

countries. 

Machine learning will be used to fuse the information of local conditions (measurements of local 

energy production and weather) and numerical weather predictions to learn to predict the energy 

production at local sites in the future. 

Input and output data 
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Weather forecast data 

The used weather forecast data has been derived from the ECMWF-IFS weather forecasting model. 

It is available for the area of Europe (see Table 7 for the precise definition) with a spatial resolution 

of 0.1° in both horizontal directions in space. The temporal resolution is 1 hour with a new model 

initialised twice a day (at 00:00 and 12:00 UTC). The model simulations are run for several days but 

the data that is provided here has a maximum lead time of 48 hours. 

Submitted for this deliverable will be a time period of six months (January to June) in 2019, however, 

the aim for the tier-2 dataset will be to gather at least 4.5 years of data (January 2017 to June 2021). 

The data is stored in NetCDF format with each file containing one model run for the whole area. 

Covered area 35°N to 70°N latitude 
25°W to 30°E longitude 

Horizontal spatial resolution 0.1 ° x 0.1 ° 

Temporal resolution 1 h 

Frequency of model runs Twice a day (00:00 and 12:00 UTC) 

Length of runs 48 h 

Time period January to June 2019 (Tier-1) 
January 2017 to June 2021 (Tier-2) 

Table 7: A6 data description.      

In the vertical direction – apart from the surface parameters -- the meteorological fields are 

available both on model levels and on pressure levels. 

Available model levels are the lowest ten levels (128 – 137) of the ECMWF-IFS weather forecasting 

model. For pressure levels, there are 500hPa, 800hPa, 925hPa, 950hPa and 1000hPa available. 

The fields per level type can be found in Table 8. Fields labelled “accumulated” are provided as 

accumulated sums over the length of the forecast, e.g. direct solar radiation at hour 12 of the 

forecast will include the solar radiation for the first 12 hours. Hourly values can be derived by 

subtracting neighbouring time slices, e.g. hour 12 minus hour 11. 

Level type Field name Accumulated 

Model Levels Temperature [K] 
Specific Humidity [kg/kg] 
U-wind [m/s] 
V-wind [m/s] 

 

Pressure Levels Temperature [K] 
Relative Humidity [%] 
Geopotential [m²/s²] 
U-wind [m/s] 
V-wind [m/s] 

 

Surface Level Surface solar radiation downwards [J/m²] 
Direct solar radiation [J/m²] 
Total sky direct solar radiation at surface [J/m²] 
Geopotential [m²/s²] 

Yes 
Yes 
Yes 
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Surface pressure [Pa] 
Height of convective cloud top [m] 
Total cloud cover [1] 
Low cloud cover [1] 
Medium cloud cover [1] 
High cloud cover [1] 
Visibility [m] 
Total precipitation [m] 
Precipitation type [1] 
Averaged total lightning flash density in the last 
hour [1/km²d] 

 
 
 
 

 
 
 
Yes 
 
 

 

Table 8: A6 weather model predictors. 

Power production data 

The second type of input data is power production data from 45 wind energy plants in Germany. 

They are provided like the weather data as NetCDF with one file per plant. The available fields are 

listed in Table 9 and a short description of the data is provided. 

Field name Short description 

production Mean power production in kW 

production_min Minimal power production in kW 

production_max Maximal power production in kW 

wind_sped Mean wind speed in m/s 

wind_speed_min Minimal wind speed in m/s 

wind_speed_max Maximal wind speed in m/s 

rotor Mean rotor speed in rounds per minute 

rotor_min Minimal rotor speed in rounds per minute 

rotor_max Maximal rotor speed in rounds per minute 

errornumber Error number of the turbine 

eisman_regulation_edia Einspeisemanagement1 inferred from the power provider E.DIS 

eisman_regulation_logs Einspeisemanagement¹ inferred from the turbine logs 

status Status of the turbine (1: running, 0: stopped, unknown) 
Table 9: A6 wind turbine fields. All values apply to the last 10 minutes as this is the temporal resolution.  

All information that is saved in the headers is listed in the following: 
 

● Convention (CF 1.6) 
   

● Title 
   

● Summary (short description of the data) 
   

● Institution (4Cast) 
   

● Source (on-site measurements) 
   

● Comment (data provided by the company Notus Energy) 
   

 
1  artificial reduction of produced power to ensure net stability 
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● Name of the wind plant 
   

● Power rating/nominal power 
   

● Hub height 
   

● Night regulation (only if the plant is regulated at night) 

Also, information about longitude, latitude and height above sea level are provided for each time 
series. 

The temporal resolution of these data is 10 min. The data availability varies across the sites, with a 
couple of plants providing data across the entire 4.5 year timeframe but most producing less (the 
shortest being six months). 

The field “production” is used as the target of the machine learning application with the possibility 
to remove implausible values using the other fields, e.g. “eisman_regulation_edis” and “status”. 

Loss function and quality measures 
         
There are a multitude of possible loss functions for this regression problem. We mainly use the 
normalized mean absolute error (nMAE), where the normalization is done according to the nominal 
power of the respective wind turbine. The MAE is computed as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑ |Ŷ𝑖 −  𝑌𝑖|

𝑛

𝑛=1

 

with 𝑛 being the number of predicted values, Ŷ𝑖the predicted values and 𝑌𝑖the measured values. The 
nMAE is then: 

𝑛𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝑌𝑛𝑜𝑚
 , 

𝑌𝑛𝑜𝑚being the nominal (maximal possible) power. 

Additionally, measures to quantify variations of the error (like the variance of nMAE) might become 
interesting with regard to the quality of the forecast during different conditions (e.g. large weather 
situation). 

 
Machine learning solution 
The plan for this application is to use a multitude of machine learning approaches like neural 
networks and explainable machine learning but also their combination. Different methods of feature 
engineering will have a great effect on the quality of prediction as well, e.g. one could just use the 
weather prediction of one specific grid cell of the numerical weather model or use a greater area 
around a wind turbine and study the effect on the forecast. Another approach would be to develop a 
classification of weather for the particular country or for the whole Europe and use this as a feature 
for the machine learning problem. 

The dataset provided in this deliverable will serve as a means to tackle all these different approaches 

and possibly more. 
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4 Data access and Jupyter notebooks 

Data access through python is provided using CliMetLab plugins. Example jupyter notebooks have 

also been prepared to explore the data and demonstrate simple machine learning solutions for each 

problem. 

4.1 CliMetLab  

CliMetLab manages the downloading and loading of data, for a variety of datasets, dubbed plugins. 

Plugins have been created for each of the applications, providing data to the user within minimal 

lines of code. e.g. 

!pip install climetlab climetlab-maelstrom-radiation 
import climetlab as cml 
cmlds = cml.load_dataset(‘maelstrom-radiation’) 
ds = cmlds.to_xarray() 

First, using the python package installer tool, pip, we install CliMetLab and the plugin for the A3 

radiation dataset. Then we import CliMetLab and load the dataset, which downloads the data on 

first use. Finally, we can transform the data into an xarray dataset ready for exploration and training. 

In the table below are the names of the pip repositories and dataset names for each of the 

applications which can be used in place of the radiation example above. 

Application Pip package name CML dataset name 

A1: Postprocessing climetlab-maelstrom-yr ‘maelstrom-yr’ 

A3: Radiation climetlab-maelstrom-radiation ‘maelstrom-radiation’ 

       NOGWD climetlab-maelstrom-nogwd ‘maelstrom-nogwd’ 

A4: ENS10 climetlab-maelstrom-ens10 ‘maelstrom-ens10’ 

A5: Downscaling climetlab-maelstrom-downscaling ‘maelstrom-downscaling’ 

A6: Power 
production 

climetlab-maelstrom-power-
production 

‘maelstrom-constants-a-b’ 
‘maelstrom-power-production’ 
‘maelstrom-weather-model-level’ 
‘maelstrom-weather-pressure-level’ 
‘maelstrom-weather-surface-level’ 

Table 10: MAELSTROM CliMetLab plugins 

4.2 Jupyter notebooks 

Jupyter notebooks have been created to explore the datasets and demonstrate simple machine 

learning solutions to act as first benchmarks. These can be accessed through the links in the table 

below. Each will begin with using CliMetLab to download and load the data and is the recommended 

place to begin exploring each application. 

Application Jupyter notebook link 

A1: Postprocessing  https://github.com/metno/maelstrom-
yr/blob/main/notebooks/demo_yr.ipynb 

A3: Radiation 
 

https://git.ecmwf.int/projects/MLFET/repos/maelstrom-
radiation/browse/notebooks/demo_radiation.ipynb 

       NOGWD 
 

https://git.ecmwf.int/projects/MLFET/repos/maelstrom-
nogwd/browse/notebooks/demo_nogwd.ipynb 

https://climetlab.readthedocs.io/
https://climetlab.readthedocs.io/
http://xarray.pydata.org/
https://pypi.org/project/climetlab-maelstrom-yr/
https://pypi.org/project/climetlab-maelstrom-radiation/
https://pypi.org/project/climetlab-maelstrom-nogwd/
https://pypi.org/project/climetlab-maelstrom-ens10/
https://pypi.org/project/climetlab-maelstrom-downscaling/
https://pypi.org/project/climetlab-maelstrom-power-production/
https://pypi.org/project/climetlab-maelstrom-power-production/
https://github.com/metno/maelstrom-yr/blob/main/notebooks/demo_yr.ipynb
https://github.com/metno/maelstrom-yr/blob/main/notebooks/demo_yr.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation/browse/notebooks/demo_radiation.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation/browse/notebooks/demo_radiation.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-nogwd/browse/notebooks/demo_nogwd.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-nogwd/browse/notebooks/demo_nogwd.ipynb
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A4: ENS10 https://github.com/spcl/climetlab-maelstrom-
ens10/blob/main/notebooks/demo_ens10.ipynb  
https://github.com/spcl/climetlab-maelstrom-
ens10/blob/main/notebooks/demo_toy.ipynb  

A5: Downscaling https://git.ecmwf.int/projects/MLFET/repos/maelstrom-downscaling-
ap5/browse/notebooks/demo_downscaling_dataset.ipynb 

A6: Power 
production 

https://github.com/faemmi/climetlab-plugin-
a6/blob/main/notebooks/demo_maelstrom_production_forecasts.ipynb 

Table 11: Example Jupyter notebooks. 

4.3 Code Repositories 

The repositories for these plugins and notebooks can be found at the links below. 

Table 12: Plugin code repositories. 
 

  

Application URL 

A1: Postprocessing https://github.com/metno/maelstrom-yr 

A3: Radiation 
       NOGWD 

https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation 
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-nogwd 

A4: ENS10 https://github.com/spcl/climetlab-maelstrom-ens10 

A5: Downscaling https://git.ecmwf.int/projects/MLFET/repos/maelstrom-downscaling-ap5 

A6: Power 
production 

https://github.com/faemmi/climetlab-plugin-a6 

https://github.com/spcl/climetlab-maelstrom-ens10/blob/main/notebooks/demo_ens10.ipynb
https://github.com/spcl/climetlab-maelstrom-ens10/blob/main/notebooks/demo_ens10.ipynb
https://github.com/spcl/climetlab-maelstrom-ens10/blob/main/notebooks/demo_toy.ipynb
https://github.com/spcl/climetlab-maelstrom-ens10/blob/main/notebooks/demo_toy.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-downscaling-ap5/browse/notebooks/demo_downscaling_dataset.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-downscaling-ap5/browse/notebooks/demo_downscaling_dataset.ipynb
https://github.com/faemmi/climetlab-plugin-a6/blob/main/notebooks/demo_maelstrom_production_forecasts.ipynb
https://github.com/faemmi/climetlab-plugin-a6/blob/main/notebooks/demo_maelstrom_production_forecasts.ipynb
https://github.com/metno/maelstrom-a1
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-nogwd
https://github.com/spcl/climetlab-maelstrom-ens10/blob/main/notebooks/demo_ens10.ipynb
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-downscaling-ap5
https://github.com/faemmi/climetlab-plugin-a6
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5 Conclusion 

MAELSTROM deliverable 1.1 provides initial datasets for the six applications in the project. Crucially, 

it also provides easy and consistent methods to download and load each of the datasets into Python. 

The datasets that are published together with this deliverable will form the basis for the software 

and hardware benchmarks of MAELSTROM and the interactions between work package 1, 2, and 3 

within the project. However, the datasets will also enable external machine learners to train 

meaningful machine learning tools that are based on large datasets and to publish results such that 

they can benefit the application developments within MAELSTROM. 
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