
MAchinE Learning for Scalable meTeoROlogy

and climate

Final version of workflow tools published

Oliver Kindler, Kristian Ehlert, Fabian Emmerich,

Saleh Ashkboos, Thomas Nipen

www.maelstrom-eurohpc.eu

http://www.maelstrom-eurohpc.eu


D2.5

Final version of workflow tools published

Author(s): Oliver Kindler (4cast), Kristian Ehlert (4cast),

Fabian Emmerich (4cast), Saleh Ashkboos(ETH),

Thomas Nipen (MetNorway)

Dissemination Level: Public

Date: 28/03/2024

Version: 1.0

Contractual Delivery Date: 31/03/2024

Work Package/ Task: WP2/ T2.2 T2.3 T2.4 T2.5 T2.6

Document Owner: 4cast

Contributors: 4cast, ECMWF, ETH, MetNorway

Status: Final



MAELSTROM

Machine Learning for Scalable Meteorology and

Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:

ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 955513. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme and United Kingdom, Germany,
Italy, Luxembourg, Switzerland, Norway

mailto:Peter.Dueben@ecmwf.int


MAELSTROM 2022

Contents

1 EXECUTIVE SUMMARY 6

2 INTRODUCTION 7

2.1 About MAELSTROM 7

2.2 Scope of this Deliverable 7

2.2.1 OBJECTIVES OF THIS DELIVERABLE 7

2.2.2 WORK PERFORMED IN THIS DELIVERABLE 8

2.2.3 DEVIATIONS AND COUNTER MEASURES 8

3 PROGRESS BY WORK PACKAGE TASKS 9

3.1 Workflow Platform (Task 2.2) 10

3.2 Benchmarking (Task 2.3) 12

3.3 User Interface (Task 2.4) 13

3.2.1 ROLE-BASED ACCESS CONTROL AND USER MANAGEMENT 13

3.2.2 RUN SUBMISSION DETAILS 16

3.2.3. ADDITIONAL AND PLANNED FEATURES 18

3.4 Data Input/Output Acceleration (Task 2.5) 19

3.5 Deployment and Infrastructure (Task 2.6) 20

4 UPDATED ARCHITECTURE OF MANTIK 22

4.1 AWS deployment 22

4.2 Frontend deployment 25

4.3 Getting started with Mantik 28

5 CONCLUSION 29

6 REFERENCES 30

D2.5 Final version of workflow tools published

4



MAELSTROM 2022

Figures

Figure 1: Collaboration menu in Mantik 13

Figure 2: Project Collaboration page and structure of user Groups / Organizations. 14

Figure 3: Run submission list of a project with action buttons on the right side. 16

Figure 4: HPC logs tab in the Run details menu. 17

Figure 5: An example of using CliMetLab plugin for downloading ENS-10 dataset in application 4. 19

Figure 6: Architecture flowchart of Mantik. 23

Figure 7: Designing Mantik in Figma. 27

Tables

Table 1: Project roles and respective rights in Mantik. 15

D2.5 Final version of workflow tools published

5



MAELSTROM 2022

1 Executive Summary

This document presents a comprehensive overview of the advancements made in the development

of the Mantik workflow platform, serving as the primary outcome of Work Package 2. The

expectations on the platform are outlined in Deliverable 2.1 by delineating a weather and climate

workflow and formulating requirements. Naturally, this report also provides information on the latest

developments after Deliverable 2.4 in section 3.

Users benefit from the platform's ability to store applications, and to facilitate reproducibility,

flexibility, and extensibility of Machine Learning (ML) solutions while fostering collaboration.

Additionally, the Mantik Web interface allows for convenient benchmarking of MAELSTROM

applications as well as integrated experiment tracking and versioning features via incorporating the

open source library MLflow. Users can effortlessly replicate earlier stages of application development

or adjust specific training parameters, significantly reducing overhead. Furthermore, comprehensive

documentation of Mantik's functionalities is readily available online.

By project completion, the platform grants access to JSC and CSCS cluster nodes via the web

interface, adhering to the highest security standards.

D2.5 Final version of workflow tools published

6



MAELSTROM 2022

2 Introduction

2.1 About MAELSTROM

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke

compute system designs for optimal application performance and energy efficiency, a software

framework to optimise usability and training efficiency for machine learning (ML) at scale, and

large-scale ML applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of

computing systems regarding energy consumption, time-to-solution, numerical precision and

solution accuracy. Customised compute systems will be designed that are optimised for application

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware

developments, driven by general ML applications, toward needs of weather and climate applications.

The MAELSTROM software framework will enable scientists to apply and compare ML tools and

libraries efficiently across a wide range of computer systems. A user interface will link application

developers with compute system designers, and automated benchmarking and error detection of ML

solutions will be performed during the development phase. Tools will be published as open source.

The MAELSTROM ML applications will cover all important components of the workflow of weather

and climate predictions including the processing of observations, the assimilation of observations to

generate initial and reference conditions, model simulations, as well as post-processing of model

data and the development of forecast products. For each application, benchmark datasets with up to

10 terabytes of data will be published online for training and ML tool-developments at the scale of

the fastest supercomputers in the world. MAELSTROM ML solutions will serve as a blueprint for a

wide range of ML applications on supercomputers in the future.

2.2 Scope of this Deliverable

2.2.1 Objectives of this Deliverable

The primary objective of this Deliverable is the description of the final public version of the Mantik

workflow platform1,2 (Task 2.2) and Graphical User Interface (Task 2.4). Beside enabling the

reproduction, versioning and tracking of ML experiments, the platform shall also introduce the

possibility to share solutions and experiences regarding benchmarking results, fostering

communication and recommendations between application developers of WP1 (Task 2.3).

Data preprocessing tools and the entire data loading pipeline instrumentalise CliMetLab Plugins for

the MAELSTROM applications to ensure fast access to the data sets (Task 2.5), leading to significant

improvements in data processing as the first step of the workflow.

During the project, Mantik was reinvented as a universal interface to HPC infrastructure ,simplifying

usability, while maintaining a necessarily high security standard in HPC handling (Task 2.6). After a

solution is deemed final, subsequent users shall be enabled to adapt it easily.

2 https://gitlab.com/mantik-ai

1 https://cloud.mantik.ai

D2.5 Final version of workflow tools published

7



MAELSTROM 2022

2.2.2 Work performed in this Deliverable

As a concluding report, this document will serve as a summary of the developments of Mantik during

the MAELSTROM project. For more detailed information, see references provided in the text.

Through the integration of the HPC interface softwares UNICORE3 and FirecREST4 (maintained by the

Jülich Supercomputing Centre (JSC) and the Swiss National Supercomputing Centre (CSCS),

respectively), the Mantik web-platform enables users to execute ML applications on the JSC and CSCS

HPC clusters. To achieve this, 4cast has been in extensive collaboration with the responsible

developers of UNICORE and FirecREST.

MAELSTROM has been represented at several conferences, where 4cast presented the Mantik

workflow platform (PASC22 [1], HiPEAC 2023 [2], EuroHPC Summit 2023 [3]). Following an invitation

of the FirecREST team at CSCS, 4cast has contributed a talk to the SOS26 conference, where we

demonstrated how FirecREST was incorporated into the Mantik platform to enable access to the

CSCS cluster via Mantik. [4]

Since Deliverable 2.4 new features on user collaboration have been implemented, enabling

role-based access control (RBAC). This allows users to form Groups and Organizations and assign

specific roles to members, leading to different levels of access to the functionalities of Mantik

projects.

A more detailed description of the updated architecture of Mantik is provided in section 4.

2.2.3 Deviations and countermeasures

The project aimed to provide a comprehensive ML development platform developed from scratch.

However, it was discovered that MLflow already offers essential features for this purpose. As a result,

Mantik integrated these functionalities, enabling users to store, reproduce, share, and benchmark

ML solutions, along with its core feature as a universal interface for HPC infrastructure.

Initially, MAELSTROM aimed to automate benchmarking cycles quarterly, but experience taught that

the necessity of executing a benchmark is best judged by the scientists themselves. To address this,

an automated run submission feature was implemented in Mantik, allowing users to schedule

benchmarking runs ahead and flexible on HPC clusters as needed. This approach offers a less

resource-intensive alternative while still accommodating additional use cases beyond benchmarking.

For more details about the deviations related to the benchmarking infrastructure, the reader is

referred to Deliverable D2.3 focusing on performance benchmarking.

4 https://products.cscs.ch/firecrest

3 https://www.unicore.eu

D2.5 Final version of workflow tools published

8



MAELSTROM 2022

3 Progress by Work Package Tasks

This section provides a detailed update on the recent progress separated by Work Package Tasks.

It focuses on the improvements made since the last Deliverable 2.4. For a comprehensive view on

the Mantik platform as a whole, the reader is referred to section 4.

General developments in the MAELSTROM workflow will be described from the perspective of the

workflow platform.

3.1 Workflow Platform (Tasks 2.2)

The development of the web-based platform Mantik by the MAELSTROM project takes into account

the requirements provided by weather and climate researchers. By integrating these with a standard

ML workflow protocol and adjusting platform expectations throughout the project, several software

objectives were identified to facilitate the production cycle. These have been described in prior

Deliverables as well and are mentioned here again for the convenience of the reader:

● Utilising HPC clusters typically demands a deep understanding of specialised software

environments managed by cluster administrators, imposing significant overhead on

researchers. Mantik seeks to alleviate this burden by addressing the RestAPI of the cluster

interface software. This primarily targets the JSC cluster, where numerous large datasets

crucial to MAELSTROM's weather and climate research are hosted. In addition, we plan to

integrate additional HPC infrastructure relevant to the project, such as cluster nodes of E4 or

the Swiss cluster CSCS through their interface FirecREST.

● To ensure the reproducibility of our ML solutions, every aspect of the workflow must

integrate smoothly with the platform. This includes fundamental data management,

application code, and the various experiments conducted, each representing different model

variations and their corresponding output metrics. By hosting these assets on the platform,

users can effectively interact with their applications on HPC infrastructure, facilitating tasks

such as model training, experiment tracking and the ability to replicate results at any given

moment in the future.

● We aim to foster collaboration and the establishment of interest groups within the research

community. Platform users should have the capability to share their ML applications with

selected researchers or the public, promoting knowledge exchange and enhancing ML

solutions.

● To facilitate the ongoing improvement of solutions, the software framework should

encourage the exchange of well-performing ML applications among users. Hosting a diverse

range of applications, properly categorised, sets the stage for easier access to cutting-edge

ML solutions for both newcomers and seasoned researchers alike.

D2.5 Final version of workflow tools published

9



MAELSTROM 2022

More details on the architecture of Mantik are given in Section 4.

To address the requirements listed above, the following functionalities have been implemented:

● The open-source ML framework MLflow5 [2] is used for tracking user-chosen training

parameters and for model versioning. It provides a large range of functionalities to support

the workflow of ML developers.

● MLflow does not provide any security measures when hosting its features publicly i.e.

providing the possibility of restricting access. Therefore, we integrated features that facilitate

user management and limit access to authorised individuals, ensuring secure access to the

AWS cloud instance hosting our MLflow platform.

Personal credentials to HPC infrastructure can be added in user settings, so a run can be

scheduled via the GUI. Furthermore, RBACis implemented, allowing users to form Groups

and Organizations.

● To offer users access to HPC resources, we created the Mantik Compute Backend. It provides

a REST API for directly submitting ML applications to the computational sites, and its usage is

also provided in a more convenient way through the frontend of the Mantik platform. In

order to use the MLflow functions, applications must adhere to the structure of MLprojects,

a format structure given by MLflow. MLprojects ensure that ML applications execution is

handled flawlessly on all platforms.

● The JSC cluster is crucial for the MAELSTROM project, since most data is hosted there, and

their hardware systems are used by all MAELSTROM Applications to train the ML models.

Their interface software UNICORE was therefore integrated by Mantik developers to allow

interacting with their systems through the Mantik platform. Additionally, we integrated the

FirecREST interface of CSCS. The workflow platform is able to send requests and schedule

runs via a GUI through UNICORE and FirecREST.

5 https://mlflow.org

D2.5 Final version of workflow tools published

10

https://mlflow.org


MAELSTROM 2022

● A Mantik Python package was developed6. It provides users with a Command line interface

(CLI), offering authentication, data transfer, and run submission:

○ To grant MLflow users access to the cloud instance, the package can authenticate

users on the platform and provide them with access to the secure MLflow services

from Python applications.

○ Data transfer is possible to S3 buckets as well as HPC sites that allow access via

UNICORE. Files can be transferred between the cluster and local machines.

Moreover, it allows to perform all common file system operations on the cluster:

viewing directory contents, and creating, copying, or deleting directories or files.

○ The package offers Pythonic access to the Compute Backend API, allowing users to

directly run and oversee their ML applications on the preferred HPC system from any

location.

The usage of the package is documented in the Mantik Documentation.7

● Presently, Mantik is a fully operational web platform, encompassing all the outlined

requirements, not previously mentioned recent updates include:

○ Tutorials have been added to improve the overall user experience.

○ The development progress is documented in detail in the Changelogs8.

8 https://mantik-ai.gitlab.io/mantik/changelog.html#added

7 https://mantik-ai.gitlab.io/mantik/cli.html

6 https://pypi.org/project/mantik

D2.5 Final version of workflow tools published

11

https://mantik-ai.gitlab.io/mantik/changelog.html#added
https://mantik-ai.gitlab.io/mantik/cli.html
https://pypi.org/project/mantik


MAELSTROM 2022

3.2 Benchmarking (Task 2.3)

For benchmarking the applications inside MAELSTROM, we widely use Deep500 [5], developed by

ETH Zurich. Deep500 is a modular cross-platform benchmarking infrastructure that helps to evaluate

the performance (and accuracy) of deep learning programs. Deep500 is designed in a way that

breaks down deep learning into different levels (operators, network processing, training, and

distributed training) and measures each level separately. The code is open-source and can be found

on GitHub9.

Within MAELSTROM, ETH developed an interface for Deep500 to measure weather and climate

applications. This is developed mainly for supporting the applications in PyTorch and TensorFlow with

an easy-to-use interface. We performed two software benchmarks for evaluating all applications

within MAELSTROM and reported the results in deliverables 1.3 and 2.6. This improvement focused

mainly on making it easier to mark and note important parts of an application for timing reasons,

such as I/O and backpropagation, while also keeping track of the total time it takes to run. We

created a straightforward script to test all applications. The code and tutorials are available on

GitHub10.

As of now, we used Deep500 to measure different aspects of MAELSTROM applications. These

aspects include batch computation, epoch computation, forward and backward pass, and I/O. Using

such a benchmarking tool, we unified all the applications benchmarking (regardless of their

framework) and show that Deep500 is a fully functional tool that is instrumentalized by all

MAELSTROM applications for benchmarking.

All application developers additionally used the command line tool JUBE11 to orchestrate their

execution of benchmark runs. JUBE was developed by JSC to simplify the process of benchmarking

on various machines. It automatizes HPC job submissions for user-specified parameters relevant to

the benchmarking of applications. In addition users get a convenient overview of their results.

11https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/jube?expand=translations,fzjsettin
gs,nearest-institut

10 https://github.com/sashkboos/Deep500-for-MAELSTROM

9 https://github.com/deep500/deep500

D2.5 Final version of workflow tools published

12

https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/jube?expand=translations,fzjsettings,nearest-institut
https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/jube?expand=translations,fzjsettings,nearest-institut
https://github.com/sashkboos/Deep500-for-MAELSTROM
https://github.com/deep500/deep500


MAELSTROM 2022

3.2. User Interface (Task 2.4)

In this subsection, we detail recent progress on the User Interface, as presented in Deliverable 2.4,

pages 12-24, subsection “3.2. User Interface (Task 2.4)”. The text is formulated in an analogous style

of writing to support comprehensibility.

Here, the RBAC will be presented as well as Run submission details. All user settings, currently

available and planned will be described. An outlook on development plans after the MAELSTROM

project is provided.

3.2.1. Role-based access control (RBAC) and user management

To foster collaboration and shareability of ML solutions, the Mantik workflow platform provides

integrated features of user management. It is a crucial component of any web-based platform,

encompassing various core functions to ensure secure and efficient interactions between users and

the system. It involves enabling users to register accounts by providing necessary information and

credentials. Once registered, users can manage their profiles by updating personal details and

preferences. Password management allows users to reset their passwords. Naturally, the user email

address can be updated at any time.

Figure 1: Collaboration menu in Mantik.

In order to collaborate with each other and share solutions, users can arrange themselves in two

main structures, Groups and Organizations. While Groups will only consist of users, Organizations

D2.5 Final version of workflow tools published

13



MAELSTROM 2022

will be able to add entire Groups and users alike (see Figure 2, bottom). To create a Group or

Organization the user has to enter the ‘My Collaborations’ menu, as seen above in Figure 1.

As written in Deliverable 2.4 Mantik organises the ML workflow in Projects. The tab ‘Collaborations’

has been added recently to the settings tab of the Project page (Figure 2, top). Here, the owner of a

Project can invite other users, Groups or entire Organisations.

Figure 2: Project Collaboration page (top) and structure of user Groups / Organizations (bottom).

D2.5 Final version of workflow tools published

14



MAELSTROM 2022

If a user is invited to a Project, the invitation will show up at the Bell icon left to the user menu on the

top bar. Invites to Groups or Organisations will show up for the respective administrator. Every user,

Group or Organization has to be assigned one of five different roles by the Project owner as part of

the Invitation.

Roles are hereditary i.e. every user of a Group or Organization will be assigned the same role. Project

owners are therefore advised to not assign roles with a higher level than Reporter to entire Groups or

Organizations. Should a member of a Group or Organization need higher level access, roles can be

overwritten by a personalised invitation to the user.

Project Role Description Rights

Guest A user who visits the project Read only.

Reporter A user that is part of a project, but not
involved in the research

All of Guest and deploy models for inference

Researcher A user who is doing the research within
the project.

All of Reporter, update code, data, run,
experiment and model repositories.

Maintainer A user who is managing the project All of Researcher and deploy code from a
repository for e.g. training, update project
info.

Owner A user who owns the project All of Maintainer and change all project
settings including manage user/user group
roles, invite users/user groups to the project
and delete the project.

Table 1: Project roles and respective rights in Mantik.

D2.5 Final version of workflow tools published

15



MAELSTROM 2022

3.2.2. Run submission details

After a Run has been submitted to an HPC cluster (see D2.4 section 3.2.2 on model training and data

on HPC clusters, p. 18), it will show up as an entry in the Run Submissions tab of the Project page as

seen in Figure 3. For every submission to the cluster, the user is given a set of information. This

includes the creation date, a user-chosen name, the corresponding MLflow Experiment, the cluster it

was submitted to and the status of the Run. The status indicates the state of a run in the process of

the scheduling mechanisms of the respective HPC site.

Figure 3: Run submission list of a project with action buttons on the right side.

Mantik offers the user the possibility to interact with the Run through several action buttons. These

functions will be explained in detail in this subsection.

By clicking on the eye symbol, the user can access detailed information about the submitted run (see

Figure 4). Logs delivered by the HPC cluster can be viewed through the Mantik GUI as well as the

submission info from Mantik. This feature allows the researcher to access details provided by the

cluster, enhancing the workflow. If something went wrong and a submission failed, adjustments can

be made easily via the re-run option. This can be found when clicking the sandwich menu on the

right hand side of the action buttons. Here, the original run form re-opens, adjustments to the

backend configuration can be performed and then be submitted with minimal effort. Naturally, runs

can be deleted or renamed if needed.

D2.5 Final version of workflow tools published

16



MAELSTROM 2022

Figure 4: HPC logs tab in the Run details menu.

Furthermore, a user can download their entire Run directory on the cluster via the ‘Download’

option in the menu to the right. Should budget accounts run out after some time, the user will still

be able to analyse and learn from past endeavours through this convenient feature. Additionally, it

facilitates troubleshooting by providing access to historical data, preserving valuable insights for

knowledge retention. Moreover, saved log files serve as educational resources, support performance

analysis, and inform strategic decision-making, contributing to a more efficient and informed

workflow.

D2.5 Final version of workflow tools published

17



MAELSTROM 2022

3.2.3. Additional and planned features

In this section, we delve into the ongoing evolution of the graphical user interface (GUI) of the

Mantik platform, exploring both current enhancements and future planned features. As technology

advances and user expectations evolve, it becomes imperative to continually refine and expand the

functionality of the GUI to ensure a seamless and intuitive user experience. By incorporating

additional features and refining existing ones, Mantik aims to empower users with greater control,

flexibility, reproducibility and efficiency in their machine learning workflow. In this context, we

outline the envisioned enhancements that are set to further elevate the user experience and

productivity within the Mantik platform:

● By now, only public repositories on the SaaS platforms GitLab, GitHub, and Bitbucket, and

public repositories on self-hosted GitLab platforms can be added as a source of ML

applications. Private repositories are generally not supported yet. Expanding the capability to

add all kinds of self-hosted and private repositories within the Mantik platform presents

several advantages for users. The expansion of repository sources within Mantik contributes

to a more inclusive, collaborative, and versatile machine learning development environment.

● Currently, the MLflow GUI is accessible separately via our self-hosted MLflow instance.

However, in the future, we plan to integrate the MLflow GUI into the Mantik interface by

forking the open-source code, thereby unifying the frontends.

● The models tab in the Project page is to be implemented after the end of the MAELSTROM

project. For each run with a ‘Finished’ status, a user can register the output machine learning

model of a run. This model will then show up at the Models page. More convenience

functions related to models are planned here but it is of lower relevance for the

MAELSTROM project.

D2.5 Final version of workflow tools published

18



MAELSTROM 2022

3.4 Data Input/Output Acceleration (Task 2.5)

All applications use the python package CliMetLab12 to provide their datasets. This simplifies

reproducibility of results by external researchers and allows students to investigate state-of-the-art

research. For details we refer the user to deliverable 2.4 section 3.3.1.

We observe that I/O is one of the main bottlenecks in the performance of the applications during the

benchmarking deliverables. This is because weather and climate applications rely on large datasets

and the size of the data is an order of magnitude larger than the size of the machine learning models

(see [6]) and the machine learning solutions are affected by I/O issues.

To mitigate this issue, in the first step in application 4, ETH proposes a CliMetLab plugin to download

and use of ENS-10 dataset [6]. The plugin allows the downloading of a subset of the dataset for a

fixed date and surface level without the need to download (or process) the whole dataset (which is

about 3TB) and convert it to xarray format.

The following figure shows an example of using the plugin to download the ENS-10 dataset.

Figure 5: An example of using CliMetLab plugin for downloading ENS-10 dataset in application 4.

In addition to the plugin above, application 4 came up with another solution for solving the I/O issue.

To this end, in deliverable 1.4, they showed that the dataset could be saved in NumPy format instead

of NetCDF format (which is the default format in application 4 for training neural networks). This

resulted in I/O acceleration up to 4.9 times for their application as converting NumPy arrays is much

faster than NetCDF format for PyTorch codes.

Since D2.4, further work was done on the data loader for application 1. In the application 1 dataset,

each file in the archive contains a full 58 hour forecast. In a previous implementation, each file was

loaded in its entirety before the next file was loaded. The contents of these files were then shuffled

to create randomised samples for the training. However, due to limited RAM on the nodes, only 3

files could be loaded at a time. This puts restrictions on how shuffled the data could be, leading to

suboptimal training. We changed the sampling strategy by reading a single hour from each file,

allowing us to shuffle across a much larger variety of weather situations. Initially, this created an I/O

12 https://climetlab.readthedocs.io/en/latest/

D2.5 Final version of workflow tools published

19

https://climetlab.readthedocs.io/en/latest/


MAELSTROM 2022

bottleneck due to the way we retrieved the data with xarray. This implementation caused the entire

file to be read each time a single hour was requested. This problem was discovered by investigating

the I/O-traces generated by the darshan tool, which we became familiar with through our

collaboration with the IO-SEA project in D2.4. The tool made it clear that the amount of data read

from disk was much higher than expected, leading us to understand where the problem likely lay.

3.5 Deployment and Infrastructure (Task 2.6)

Researchers benefit greatly from the ability to seamlessly transition between local development

environments and development on HPC clusters to create cutting-edge machine learning models.

Since Mantik is designed with an abstract interface, it also allows for a quick adaptation of any other

HPC facility. The only requirement is that it hosts a service that exposes a REST API. In the case of

UNICORE, no additional effort is required to enable users to execute their research applications on

clusters that provide a UNICORE API. Hence, model training on specialised machines of E4, developed

in WP3, is feasible as soon as UNICORE is deployed.

In the case of other interface technologies that may be hosted by other research facilities, as soon as

that interface has been adopted by Mantik, their users will be able to run their applications from the

platform. In the time since Deliverable 2.4 we integrated such an interface for FirecREST, provided by

CSCS.

In order to incorporate FirecREST into Mantik, 4cast has collaborated with the team at CSCS that

maintains FirecREST. With most required information about the software being publicly available (i.e.

software library and API documentation), and additional information that could be gained by

communicating with CSCS, the implementation of FirecREST was carried out without requiring any

changes of Mantik’s software architecture, nor introducing any conflicting changes for existing

Mantik projects and applications. The Mantik Compute Backend was extended to allow the

submission via FirecREST. Furthermore, an internal (non-user-facing) abstract interface to Mantik

Runs was introduced within the Mantik REST API to allow submission of Runs to the Mantik Compute

Backend, and retrieve any information (status, metadata, logs, tracked parameters and metrics, etc.)

or interact with submitted Runs (cancelling, downloading files from the cluster, re-submitting a Run).

All features provided to users interacting with clusters running UNICORE are therefore provided to

CSCS cluster users as well.

In Deliverable 2.4, we documented our collaboration with the RED-SEA project and their tools for

analysing network interconnect. These tools can be used to analyse potential bottlenecks when

running large-scale workloads on many HPC nodes. Since Deliverable 2.4, we have produced further

traces with application 1 and uploaded these to their publicly available repo13. Specifically, we ran

application 1 with 256 MPI tasks providing RED-SEA and the interconnect community with data for

large-scale machine learning workloads.

13 https://gitraap.i3a.info/jesus.escudero/vef-traces-repository/

D2.5 Final version of workflow tools published

20



MAELSTROM 2022

The researchers of the MAELSTROM project use Deep500 recipes14 for benchmarking and found their

recipe produces the same results on three different infrastructures for the application A4 as seen in

Deliverable 2.2. Additional software for performance optimization and portability of solutions is

being developed.

14 see Deliverable 2.3

D2.5 Final version of workflow tools published

21



MAELSTROM 2022

4 Updated architecture of Mantik

In the development journey of Mantik, the convergence of frontend and backend implementation

during the last 12 months of the MAELSTROM project marks a significant milestone. This chapter

encapsulates the results of our efforts from the software development perspective, reporting on the

structure of the software architecture. Throughout the process, we encountered challenges, made

pivotal decisions and leveraged innovative solutions to realise Mantik's vision as a cutting-edge tool

for all machine learning research instrumentalizing HPC infrastructure.

The reader will find in this chapter a short representation on the overall interaction of the Mantik

components and their deployment on Amazon Web Services (AWS), including an overview on

decisions made from the software development perspective.

4.1 Deployment on AWS

AWS is a leading cloud computing platform offering a wide range of scalable and cost-effective

services to businesses and developers worldwide. We chose AWS for its reliability, scalability, and

extensive suite of services, providing us with the flexibility and infrastructure needed to deploy

Mantik securely and efficiently.

Three AWS accounts are used for Mantik. A shared service account together with the Kiste project15,

a development environment and a production environment. Kiste is an associated partner in the

development of Mantik and focuses on ML development in the field of Geophysics. Mantik leverages

a multi-stack deployment architecture on AWS. This approach affords deployment flexibility, enabling

independent updates and modifications to distinct components of the application while avoiding

disruptions for other users.

Now we describe in further detail the components implemented in our AWS cloud instance. In the

following paragraphs the functions of each component listed in the architecture flowchart seen in

Figure 6 will be explained. The reader will follow the processing of a request through the

architecture.

Every request can come from a Mantik Client, for example tracked parameters through the

integration of the Mantik and MLflow Python packages into the application code, or from the web

browser directly, like run submissions triggered through the GUI on the Website.

The request enters first through a DNS host and is then forwarded to a Load Balancer. It distributes

incoming network traffic across multiple services to ensure efficient utilisation and prevent overload

on any individual service

This Load Balancer component is the central gatekeeper for all further processing of a request. Any

request coming in will either go directly to the MLflow Tracking Server, to the Frontend or will be

processed by the Mantik API. The API, the Compute Backend and the Tracking Server pathways will

be outlined in the following paragraphs, while the frontend deserves a subsection of its own since its

implementation marks the most significant work provided in the last 12 project months.

15 https://kiste-project.de

D2.5 Final version of workflow tools published

22



MAELSTROM 2022

Figure 6: Architecture flowchart of Mantik.

D2.5 Final version of workflow tools published

23



MAELSTROM 2022

MLflow tracking server

The MLflow Tracking Server is a self-hosted instance of the open-source software MLflow, allowing

users to use its versioning and tracking features within Mantik. It is set up in an AWS Fargate Service.

It exposes its own REST API and a GUI. Through the implemented user authentication components,

Mantik offers a secured instance which is not native to MLflow.

The MLflow Tracking Server interacts with two databases: the MLflow Backend Store and the MLflow

Artifact Store. The Backend Store, a MySQL database set up through AWS RDS service, stores

experiment metrics and parameters, providing structured data storage for MLflow experiments.

On the other hand, the Artifact Store, implemented using the cloud object storage solutions AWS S3

bucket, stores artifacts associated with MLflow experiments, such as models, figures, and

configuration files.

These databases together enable the MLflow Tracking Server to store and manage the results,

parameters, and artifacts generated during machine learning experiments.

Mantik API and Compute Backend
An asynchronous REST API that can handle multiple requests at the same time, was implemented

using the Python FastAPI Framework. Various services are connected to the API to facilitate different

functionalities.

The Scheduler service manages the scheduling of run submissions, allowing for run submissions like

benchmarking to be scheduled in advance. Additionally, the Code Access Management service

enables access to public code from external sources, including GitLab (SaaS and self-hosted), GitHub

(SaaS), and Bitbucket (SaaS). The basis of the API is a relational PostgreSQL database, hosted on AWS

RDS. This database stores essential information such as user details, project configurations, Group

and Organization memberships, as well as project-specific data like references to code repositories

and MLflow experiments. Additionally, run details required for submission to HPC clusters, as well as

associated MLflow run references and run schedules, are also stored within this database.

After all information necessary to submit a run to the HPC cluster was gathered, the Mantik API

forwards the request to the API of the Compute Backend. It serves as a bridge to the cluster and

initiates the creation of MLflow runs. The Compute Backend also facilitates the upload of

user-defined files to the run directory on the HPC cluster. The requested resources of the cluster are

specified in the backend configuration file (for details see D2.4 p. 16). Furthermore, user-defined

environment variables are set in the run environment alongside internal Mantik environment

variables by the Compute Backend before a job is placed by it in the queue of the job scheduler of

the requested HPC site.

D2.5 Final version of workflow tools published

24



MAELSTROM 2022

Security assessments on HPC credentials

Protecting confidential information provided by the users is a central responsibility of every software

development team aiming to provide a publicly available platform handling sensitive data. This

applies especially when these information are access credentials to HPC infrastructure.

In the pursuit of secure handling of third-party credentials, our approach revolves around seamlessly

authenticating users for various system interactions without necessitating repeated credential input.

This entails scenarios such as triggering runs, moving files between systems, and fetching code, all of

which should occur without user intervention once credentials are stored. Rather than developing a

proprietary solution, we have opted to leverage existing vault technology, particularly exploring

options like HashiCorp Vault (Open-Source) and AWS SM (Secrets Manager).

While both offer distinct advantages and considerations, we have chosen HashiCorp Vault due to its

versatility and scalability, despite the initial setup complexity and ongoing maintenance

requirements. By implementing the Mantik Third-Party-Credentials Handler as a service that

integrates HashiCorp Vault, we provide users with a robust and secure credential management

solution tailored to their needs and environments.

4.2 Frontend implementation

The frontend serves as the primary point of interaction for users, providing a seamless and intuitive

experience as they navigate through various features and functionalities. From the initial design

concepts to the implementation of robust frontend components, this section offers insights into the

technologies and methodologies employed.

We adhered to standards of modern frontend development considering the balance between

user-sided requirements, like intuitive structuring and optical appeal, and developer-sided

requirements, like maintainability, scalability or coding efficiency. Therefore, Mantik was structured

around a component-based architecture, where UI elements are encapsulated into reusable

components.

Frameworks/Libraries

Most interactive user interfaces (UI) are based on frameworks and libraries. Libraries like React.js or

Vue.js, or frameworks like Angular offer reusable components, state management, and routing

capabilities, streamlining the development process. In the following paragraphs we explain our

choices:

React.js

By deciding to base the Mantik UI on the React library with a large developer base, we ensure that

our open-source platform is easier adaptable and customizable for continuing future developments.

Reactjs is currently the most popular open-source JavaScript library for building user interfaces,

primarily for web applications. React offers the possibility to create interactive and dynamic UI

components and is known for its component-based architecture and declarative approach to building

UIs.

D2.5 Final version of workflow tools published

25



MAELSTROM 2022

Next.js

Next.js is a popular open-source React framework used for building web applications. It enables

developers to create server-side rendered React applications, offering features like automatic code

splitting, server-side rendering (SSR), and simplified client-side routing. Next.js provides a

streamlined development experience, allowing developers to focus on building robust and

performant applications without having to worry about complex configuration setups for server-side

rendering and routing. Since Next.js supports SSR, the HTML content of pages is generated on the

server and sent to the client, making it easily accessible to search engine bots. This ensures that

search engines can effectively analyse and index the content of Next.js applications, improving their

visibility and ranking in search engine results pages (SERPs).

Typescript

We use React in combination with Typescript, which is a superset of JavaScript. That means that any

valid JavaScript code is also valid TypeScript. TypeScript extends JavaScript by adding optional static

typing, which allows developers to define types for variables, function parameters, return values, and

more. It makes the code more maintainable as the typing already serves as a low level code

documentation and eases debugging due to preventing incorrectly written code from being

deployed.

Styling/Design

Designing and styling a modern web UI involves conceptualising the visual identity, wireframing with

tools like Figma, and styling with CSS. Component-based frameworks offer pre-designed UI elements

for faster development. Responsive design ensures accessibility across devices using techniques like

media queries and flexbox/grid layouts. Collaboration between designers and developers is crucial

for aligning vision with technical requirements.

MUI

To develop quickly and easily build modern, visually appealing user interfaces, we used MUI, a

popular open-source React UI framework based on Google's Material Design guidelines. It provides a

set of reusable React components that implement the Material Design principles. It includes many

important features, which enable building applications that facilitate testing and barrier free as well

as responsive design.

D2.5 Final version of workflow tools published

26



MAELSTROM 2022

Figma

To allow real-time collaboration when making design decisions, we created and edited first versions

of the UI in Figma. Figma is an intuitive cloud-based program crafted to streamline the design

process of web-based user interfaces. With its robust suite of tools, Figma offers its users a flexible

and minimal effort approach to UI design.

Figure 7: Designing Mantik in Figma.

Testing

Testing web user interfaces during development is crucial to ensure the functionality, usability, and

reliability of the final product. In this process bugs are identified or potential errors. Various testing

techniques, such as unit testing, user-centric testing and integration testing are employed to assess

different aspects of the UI's performance and functionality.

Additionally, tools like Jest and React Testing Library provide developers with efficient means to

automate testing processes and ensure comprehensive coverage across different browsers and

devices.

React Testing Library and Jest

We use the React Testing Library (RTL) with Jest for testing purposes.

The RTL is used to test React components regarding their user-specific functionality, like testing user

actions e.g. clicks or typing. We also installed the msw package, which lets us mock data from the

OpenAPI specs file, so in our tests we always have access to the real data models.

D2.5 Final version of workflow tools published

27



MAELSTROM 2022

4.2 Get started with Mantik

As a final subsection, we want to summarise here how a user can access Mantik and briefly represent

the entities of the platform. More detail is provided in the prior chapters and Deliverables.

Mantik can be accessed through the webpage16 as depicted above in Figure 1. Here a user can

register an account using a valid email address. After the typical confirmation process, the chosen

credentials can be used for the login. After clicking the ‘Discover’ button, the user is directed to the

Projects overview page where all publicly accessible projects are visible and can be filtered by a

search bar and by labels.

Every ML research is structured as a Project, for example every MAELSTROM application has its own

Project. In order to use Mantik properly, the Mantik Python package17 and the MLflow package must

be integrated into the application code as described in D2.4. Two additional configuration files are

needed that tell Mantik which parameters to track and the HPC cluster which resources are to be

used, the MLproject file and the Backend configuration (see MAELSTROM application 2 as an

example provided as chapter 4 in D2.4). Naturally, a code repository has to be provided by the

researcher and credentials to the cluster.

After everything is set up, the user can schedule a run directly or is given the possibility to schedule

multiple runs ahead. The tracked parameters can be found in the Experiments tab of the respective

Project page. Every function of Mantik is thoroughly documented18.

18 https://mantik-ai.gitlab.io/mantik

17 available via pip install

16 https://cloud.mantik.ai

D2.5 Final version of workflow tools published

28

https://mantik-ai.gitlab.io/mantik/
https://cloud.mantik.ai/


MAELSTROM 2022

5 Conclusion

In this report, the final utilisation of workflow tools for MAELSTROM was described. The new

architecture of Mantik was shown in greater detail as well as the recent developments on the RBAC

and user management system. Furthermore, summaries on the usage of CliMetLab, Deep500 and

JUBE were shown.

Reaching the end of the project, Mantik is now a fully operational ML development platform.

Researching the available ML platforms, it became apparent that no single tool is able to map the

entirety of possibilities that can occur in a ML workflow. Simultaneously, the use of ML approaches is

exponentially increasing in the last few years, hence increasing the need for workflow tools

massively. While some tools may offer access to HPC infrastructure, little possibility is given to ensure

reproducibility and shareability of solutions in many existing toolsets. Collaboration and monitoring

of ML models is rarely addressed.

Every new ML tool has to consider its scope, use-cases, targeted clients and range of functions very

carefully. Developed as part of a publicly funded research project, Mantik therefore prioritises to

facilitate collaboration between users and reproducibility of solutions, aiming for a shallow learning

curve, hence easy adaptation. We integrated the open-source versioning and tracking package

MLflow, tapping into its expansive user base. This integration allows researchers to submit ML

training scripts directly to the JSC and CSCS HPC clusters through a single platform with little needed

adjustments. The architecture of Mantik was designed in a way that new clusters can be integrated

modularly, reducing expected implementation time for additional clusters significantly. Organising

the work content in Project entities proved to be intuitive and RBAC will allow a large number of

researchers to collaborate effectively. Being able to save the configurations of a training script

submission to a cluster for extended periods of time while empowered to change user-selected

parameters with minimal effort, enhances the reproducibility of solutions in a self-explanatory

fashion.

Code for all applications and software packages is publicly hosted on GitHub. All data used for the ML

applications is available via the Python plugin CliMetLab. With this also only configurable parts of the

data can be accessed such that HPC access is not required and therefore even available to students.

This allows for easy experimenting and reproducing of results.

In conjunction with WP3, benchmarking of hardware is a main part of the Maelstrom project

including software to aid this process. To simplify benchmarking on various hardware we used the

command line tool JUBE developed by JSC. In addition, considerable effort has been undertaken to

optimise I/O bottlenecks encountered during development of the ML applications.

As a research project in weather and climate science MAELSTROM dealt with exceptionally large data

sets. This made us an optimal candidate for cooperating with other EuroHPC sister projects that

investigate process optimization. A joint investigation together with the I/O SEA project took place

during the last 6 months of the project leading to improvements in I/O speed for application 4 as

seen in section 3.4.

D2.5 Final version of workflow tools published

29



MAELSTROM 2022

References

[1] Emmerich, Fabian. “The Maelstrom Protocol - Workflow for the Development of AI on HPC.”

Platform for Advanced Scientific Computing (PASC), June 27, 2022, Congress Center Basel, Basel,

Switzerland. Talk.

[2] Emmerich, Fabian. “Mantik – A Workflow Tool for the Development of AI on HPC.” High

Performance Edge And Cloud computing (HiPEAC), January 17, 2023, Pierre Baudis Convention

Centre, Toulouse, France. Talk.

[3] Emmerich, Fabian. “Mantik - A Workflow Tool for the Development of AI on HPC.” EuroHPC

Summit 2023, 20-23 March 2023, Gothenburg, Sweden. Poster.

[4] Ehlert, Kristian. “Mantik - A Workflow Tool for the Development of AI on HPC.” SOS26 Conference,

March 12, 2024, Cocoa Beach, Florida, USA. Talk.

[5] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, and Torsten

Hoefler. “A modular benchmarking infrastructure for high-performance and reproducible deep

learning.” In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019.

[6] Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi,

Luca Kummer, and Torsten Hoefler. “ENS-10: A dataset for post-processing ensemble weather

forecasts.” In Advances in Neural Information Processing Systems (NeurIPS), 2022.

D2.5 Final version of workflow tools published

30



MAELSTROM 2022

Document History

Version Author(s) Date Changes
0.1 Oliver Kindler (4cast) 21/03/2024 Initial draft
0.2 Kristian Ehlert (4cast), Fabian

Emmerich (4cast)
22/03/2024 Additions and other

edits
0.3 Saleh Ashkboos (ETH), Thomas

Nipen (MetNorway)
25/03/2024 Additions and other

text passages
1.0 Oliver Kindler (4cast) 28/03/2024 Final version

Internal Review History

Internal Reviewers Date Comments
Peter Dueben (ECMWF) 28/03/2024 Minor comments and

suggestions provided
Saleh Ashkboos (MetNorway) 28/03/2024 Minor comments and

suggestions provided
Mattia Paladino (E4) 28/03/2024 Minor comments and

suggestions provided

Estimated Effort Contribution per Partner

Partner Effort
ETH 1 PM
4cast 2 PM
Total 3 PM

This publication reflects the views only of the authors, and the European High-Performance

Computing Joint Undertaking or Commission cannot be held responsible for any use which may be

made of the information contained therein.

D2.5 Final version of workflow tools published

31


