

MAchinE Learning for Scalable meTeoROlogy

and climate

Report on tests with a

tangent-linear and adjoint

version of ML emulators with

4DVar

Matthew Chantry, Ana Prieto Nemesio, Peter Dueben

www.maelstrom-eurohpc.eu

http://www.maelstrom-eurohpc.eu/

D1.5 Report on tests with a tangent-

linear and adjoint version of ML

emulators with 4DVar

Author(s): Matthew Chantry (ECMWF)

 Ana Prieto Nemesio (ECMWF)

 Peter Dueben (ECMWF)

Dissemination Level: Public

Date: 25/03/2024

Version: 0.2

Contractual Delivery Date: 31/03/2024

Work Package/ Task: WP1/ 1.5

Document Owner: ECMWF

Contributors: Organisations

Status: Draft/ for Review/ Final

MAELSTROM

Machine Learning for Scalable Meteorology and

Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:

ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 955513. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme and United Kingdom,
Germany, Italy, Luxembourg, Switzerland, Norway

mailto:Peter.Dueben@ecmwf.int

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 4

Contents

1 EXECUTIVE SUMMARY 7

2 INTRODUCTION 8

2.1 ABOUT MAELSTROM 8

2.2 SCOPE OF THIS DELIVERABLE 8

2.2.1 OBJECTIVES OF THIS DELIVERABLE 8

2.2.2 WORK PERFORMED IN THIS DELIVERABLE 8

2.2.3 DEVIATIONS AND COUNTER MEASURES 8

3 BACKGROUND 9

3.1 4D-VAR DATA ASSIMILATION 9

3.1.1 Introduction 9

3.1.2 TL and AD equations 10

3.1.3 TL AND AD TESTS 10

4 NON-OROGRAPHIC GRAVITY WAVE DRAG 11

4.1 DERIVING TL AND AD MODELS FOR NOGWD 11

4.2 Testing TL and AD properties 11

4.3 Testing TL and AD models within data assimilation 12

4.4 Summary of NOGWD 14

5 Radiative transfer 15

5.1 Background on radiative transfer 15

5.2 Deriving TL and AD models using Tensorflow 15

5.3 Deriving TL and AD models for the radiative transfer emulator 17

5.4 Testing methodology 18

5.5 Results 19

6 CONCLUSIONS AND EXPLOITATION 23

7 REFERENCES 20

Figures

Figure 1: Results for easy and hard tangent-linear tests for non-orographic gravity wave drag scheme 12

Figure 2: Relative change in temperature RMSE for experiment NN with respect to experiment REF 13

Figure 3: Computation of spatial perturbation between adjacent columns. 18

Figure 4: Comparison between the finite difference and Jacobian tangent-linears for the

downwards and upwards fluxes when perturbations to humidity are made 19

Figure 5: Ratio of the neural network Jacobian-based tangent-linear estimate, over the

finite difference estimate for the downward fluxes 20
Figure 6: Ratio of the neural network Jacobian-based tangent-linear estimate, over the finite difference

estimate for the upward fluxes 20

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 5

Tables

Table 1: Example Table 8

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 6

1 Executive Summary

This document reports on the prospects for the use of machine learning within data assimilation

algorithms for weather forecasting. This is a special application of the work delivered in Application 3

as part of Work Package 1. This application focused on the creation of emulators for components of

weather forecasting models. Accurate emulators were created as documented in Deliverable 1.6.

The emulators can, in principle, not only be used for the non-linear forecast model, but also as

linearised versions (gradient versions) for forward and backward propagation in the 4DVar data

assimilation framework at ECMWF. Gradient versions of these machine learning based emulators are

here automatically generated using machine learning libraries, and their accuracy and stability are

assessed. We document the motivation, results and prospects for future exploitation, and

investigate whether the gradient version that is automatically generated from the machine learning

libraries is sufficient for the high level of accuracy that is required in the data assimilation

framework. If the gradient version turns out to be useful for 4DVar data assimilation, this opens

another important use case for machine learning emulators in numerical weather predictions,

additionally to the straight-forward use in the forward models.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 7

2 Introduction

2.1 About MAELSTROM

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke

compute system designs for optimal application performance and energy efficiency, a software

framework to optimise usability and training efficiency for machine learning at scale, and large-scale

machine learning applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of

computing systems regarding energy consumption, time-to-solution, numerical precision and

solution accuracy. Customised compute systems will be designed that are optimised for application

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware

developments, driven by general machine learning applications, toward needs of weather and

climate applications.

The MAELSTROM software framework will enable scientists to apply and compare machine learning

tools and libraries efficiently across a wide range of computer systems. A user interface will link

application developers with compute system designers, and automated benchmarking and error

detection of machine learning solutions will be performed during the development phase. Tools will

be published as open source.

The MAELSTROM machine learning applications will cover all important components of the

workflow of weather and climate predictions including the processing of observations, the

assimilation of observations to generate initial and reference conditions, model simulations, as well

as post-processing of model data and the development of forecast products. For each application,

benchmark datasets with up to 10 terabytes of data will be published online for training and

machine learning tool-developments at the scale of the fastest supercomputers in the world.

MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning

applications on supercomputers in the future.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

To document the prospects for the use of automatically generated gradients of machine learning

emulators within gradient-based data assimilation algorithms.

2.2.2 Work performed in this deliverable

Machine learning emulators developed in previous deliverables in for Application 3 of Work Package

1 have been tested to assess the behaviour of automatically generated gradient information. The

smoothness and stability of these gradients have been measured.

2.2.3 Deviations and counter measures

No significant deviations occurred and no counter measures were required.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 8

3 Background

3.1 4D-var data assimilation

3.1.1 Introduction

In weather forecasting, data assimilation refers to the process of determining the current model

state of the atmosphere to utilise it as the initial conditions for subsequent weather predictions. This

is a minimisation problem, where one seeks to find the state of a weather forecasting model that

best fits observations over a window of time. Multiple algorithms are currently used by operational

weather forecasting centres in their daily activities, particularly prevalent are ensemble Kalman filter

(EnKF, Evensen 2003) approaches and variational data assimilation methodologies, including 3D- and

4D-var. At ECMWF, an incremental (ensemble) 4D-var technique is used (Bonavita et al. 2016). In

ECMWF’s implementation of incremental 4D-var, atmospheric state gradients are propagated

forward and backward through the IFS, ECMWF’s operational (physical) weather forecasting model.

These provide the necessary information to increment the initial estimate of the atmosphere to

better match the observations. Via an iterative approach, the initial state is incremented multiple

times towards a more optimal estimate of the current atmospheric state. To operate this method,

additional versions of the IFS are required to propagate these gradients. For the components of the

IFS, e.g. for each parameterised physical process, tangent-linear (TL) and adjoint (AD) versions of the

nonlinear components must be derived. The TL calculates how an increment to the input

atmospheric state increments the output. The adjoint model acts as an inverse to the TL model, and

when provided with an initial state of the atmosphere, and an increment to the output state,

provides the increment to the input state.

Currently, at ECMWF, the derivation and maintenance of TL and AD models is a task managed by

hand, with humans deriving and coding these models. For some components, where strong

nonlinearities exist, reformulation is required to ensure a necessary level of smoothness, e.g. via “IF”

statements in the code. This derivation and maintenance has a significant cost, often resulting in

further simplifications/approximations. For example, at the UK Met Office, a simplified set of physics

schemes is used in data assimilation (Rawlins et al. 2007). At ECMWF, some areas of TL and ADcode

have not been kept up with developments for the nonlinear forecasting model, meaning that

advances in physical modelling are not being fully utilised in data assimilation. Radiative transfer is

one example of this, where the older, less accurate, Morcrette scheme is the basis for the TL/AD

versions within 4D (Morcrette 1991). By contrast the more recent TripleClouds scheme (Shonk and

Hogan 2008) within the ecRad radiation scheme is used in the forecasting model. An upgrade of the

TL/AD code to match the more complex ecRad scheme would almost certainly lead to improvements

in forecast scores. However, the generation of such TL/AD code by hand is time consuming, and

represents a significant amount of work.

Here lies the opportunity for machine learning. Within MAELSTROM, highly accurate emulators of

the TripleClouds radiative transfer scheme have been trained using neural networks. In Deliverable

1.6, we document that emulators are stable and accurate even when coupled to the full IFS weather

forecasting model. These emulators are written in Python-based machine learning frameworks, here

Tensorflow, which provide auto-differentiability functionality. Such auto-differentiability is normally

used to train the emulators, but can be deployed to generate TL and AD models, even for complex

neural networks. The task of auto-differentiation is natural for machine learning tools such as

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 9

Tensorflow as it is also required to perform the backpropagation during the optimisation of weights

in the neural networks.

In this deliverable, we demonstrate how auto-differentiability may be used for the derivation of TL

and AD models, and test offline the behaviour of these models. We will begin by exploring this topic

in the setting of a simpler parametrised physics scheme, the non-orographic gravity wave drag. We

will then move onto the topic of radiative transfer.

3.1.2 TL and AD equations

For a model, , with 𝐊(𝑥) denoting the Jacobian matrix of partial derivatives of evaluated at

𝑥. Then the TL is written as

 𝛿𝑦 = 𝐊(𝑥) 𝛿𝑥

The adjoint is written

 𝐴𝑑𝑗𝑜𝑖𝑛𝑡 = 𝐊(𝑥)𝑇𝛿𝑦

where 𝑇 denotes the transpose. These equations must be calculated for the parametrised physics

schemes.

3.1.3 TL and AD tests

For stable and accurate convergence, two properties are required from the TL and AD models and

their relationship to the nonlinear model. These are necessary but not sufficient conditions for

successful use within data-assimilation.

First, for small increments to the state, the TL should be close to a finite difference estimation.

Mathematically, for a model, , with the corresponding TL version, F, the following expression

𝑙𝑖𝑚
𝑎→0

[(𝑥0 + 𝛼𝛿𝑥) − (𝑥0) − 𝐅(𝑥0)𝛼𝛿𝑥] = 0

should hold for plausible perturbations 𝛿𝑥. This test essentially measures the accuracy of the TL

model as a first-order Taylor approximation to the nonlinear model.

Secondly, the symmetry between the TL and adjoint models should be preserved.

[𝐅(𝑥0)𝛿𝑥]𝑇𝛿𝑦 = 𝛿𝑥𝑇 [𝐅𝑇(𝑥0)𝛿𝑦]

where 𝛿𝑦 is an arbitrary vector.

In this deliverable, we primarily assess these two tests, where the TL and AD models are calculated

using auto-differentiability of a neural network emulator.

4 Non-orographic gravity wave drag

In work preceding MAELSTROM, a machine learning emulator was developed for the non-orographic

gravity wave drag (NOGWD) process (Chantry et al. 2021). This process is important for stratospheric

predictability, in particular for the quasi-biennial oscillation (QBO). For non-orographic gravity wave

drag, a simple machine learning solution was sufficient, requiring a multi-layer perceptron. For this

process, both TL and AD models already exist within the IFS, meaning that the accuracy of the ML-

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 10

based TL/AD estimation method can be directly compared with the human-derived equivalents that

are used daily in operational forecasting. The work described below was published in Hatfield et al

2021, where further details can be found.

4.1 Deriving TL and AD models for NOGWD

For simple neural networks, the automatic differentiation feature of machine learning frameworks is

not required, as manual derivation of these is relatively straightforward, as detailed in Hatfield et al.,

2021. Using the manual derivation approach enables their integration in Fortran, the programming

language used for the IFS. Code for calling the TL and AD versions of the neural network was written

in Fortran, and tested in the IFS. Despite the fact that a human remains in this process, it is still an

instructive test, as it measures the smoothness of machine learning based emulators to

perturbations in the input and output state.

4.2 Testing TL and AD properties

Firstly, we test the necessary conditions for stable and accurate convergence in Section 3.1.3 that

describe the relationship between the TL and the finite difference estimate, as well as the TL and AD.

Figure 1 (taken from Hatfield et al 2021) shows the change in accuracy of the TL test, compared with

physics-based nonlinear and TL models. In the easy test, machine learning is used for both the

nonlinear model and TL model. This test therefore measures the accuracy of the neural network’s

estimated derivative. In the “hard” test the physics-based nonlinear model is used for the finite-

difference estimate, but the neural network is used to estimate the TL. In both tests, the neural

network-based TL behaves similarly to the physics-based TL, with the “easy” test slightly

outperforming the full physics solution and the “hard” test providing a minor degradation. Overall

the neural network derivative shows a comparable accuracy to the physics-based hand derivation.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 11

Figure 1: Comparison between the neural network TL and hand-derived TL in remaining close to a

Taylor approximation of the nonlinear model (see Hatfield et al. 2021 for further technical details).

Negative numbers indicate a better fit for the neural network, and positive a worse fit. For the “easy”

test, where the neural network derivative is compared to the neural network itself the fit is equal or

improved. When the neural network derivative is used to estimate the physical nonlinear model, the

fit is somewhat degraded at the top of the atmosphere.

When assessing the second test described in section 3.1.3, the adjoint test, we measure the

symmetry in a wide number of scenarios of input and output perturbations to the neural network

state. In summary, we find that this symmetry property is maintained to at least 9 decimal places

across all tests (see Hatfield et al. 2021 for further details).

The neural network-based TL and ADmodels both are considered to have successfully passed the

offline tests, meaning that these models can be tested within a full data assimilation minimisation

process.

4.3 Testing TL and AD models within data assimilation

As described above, the tests in Section 4.2 are considered necessary but not sufficient for success in

data assimilation. Here, we test the full use of the derivative models within the IFS’s data

assimilation algorithm. We assessed the effectiveness of our neural network-based TL and AD

models in data assimilation through a series of 4D-Var data assimilation experiments. The

experiment ran continuously throughout the winter season, from December 1st, 2018 to February

28th, 2019. We implemented 4D-Var data assimilation cycles every 12 hours, and 10-day forecasts

were generated from the final analysis produced by each cycle. Forecasts were run at TCo399,

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 12

approximately equivalent to a 25 km resolution. This was used for both the reference and test runs.

For further details on the configuration of the tests carried out see Hatfield et al. 2021.

Figure 2: The relative differencein root-mean-square error of temperature of experiment NN

compared with the reference experiment (REF, blue indicates that NN is better than REF) averaged in

the zonal direction and across all forecasts in the three-monthly experimental period, for a number of

forecast lead times (indicated in each subfigure title by “T+” with the number of hours after the initial

time). The relative difference is computed by dividing by the error of REF. Hatching indicates that

differences are significant with 95% confidence, and the sparsity of hatching indicates that the error

difference is for the most part not statistically significant. (Figure taken from Hatfield et al. 2021.)

Figure 2 shows the change in accuracy of historical weather forecasts when using the NOGWD neural

networks for the TL and AD models. Overall the accuracy changes are minimal, with almost no

statistically significant degradation shown. This can be therefore viewed as a successful test.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 13

4.4 Summary of NOGWD

In both offline and online tests, the neural network emulator-based TL and AD models were

successful in providing gradient information, enabling accurate data assimilation to be carried out.

However, it should be emphasised that non-orographic gravity wave drag is one of the simpler and

less impactful parameterisation schemes in a weather forecasting model. This does not impact the

validity of the results, but should provide caution in extrapolating to other, more nonlinear and more

impactful parametrisation schemes. We therefore moved on to test radiative transfer, which will be

a more challenging test of the approach.

5 Radiative transfer

5.1 Background on radiative transfer

The radiative transfer processes within a weather forecasting model capture longwave and shortwave

heating and cooling, involving interactions with clouds, aerosols and the land surface. These processes

are physically well understood, but their computation is too expensive to fully capture them in a

weather or climate forecasting model. Therefore approximations are made to create computationally

affordable, yet accurate, estimates of the processes. This is an area of continual development, with

new approximations and algorithms to achieve better estimates within a computational budget.

Ideally, for operational centres using variational approaches for data assimilation, new TL and AD

versions would be required whenever an update to the nonlinear radiation scheme is operationalised.

Unfortunately, due to the laborious work and time involved in hand-deriving these models, this is not

always possible, and thus, there are inconsistencies between models used in the forecasting model

and those used within the data assimilation minimisation.

In MAELSTROM, focus has been on learning an emulator of the Tripleclouds solver within ecRad, which

is used operationally in the IFS. As reported in Deliverable 1.6, these emulators have been tested not

only in isolation, but also when coupled to the IFS for weather forecast experiments. In all tests, the

emulator is exceptionally accurate, with minimal deviations seen when compared with the reference

model. Bespoke LSTM-based solutions were created, which mimic the information flow of the physical

system.

Here, we will focus on the shortwave model, which constitutes one of the two trained and tested

models. Similarly to the NOGWD results, we wish to test the accuracy of the TL and AD models.

However, due to the significantly increased complexity of these models when compared with the fully-

connected neural networks used in NOGWD, a hand-derivation of the neural network gradients is far

less appealing. Instead we used the automatic differentiation provided by the Tensorflow framework

to construct these models.

5.2 Deriving TL and AD models using Tensorflow

The radiative transfer emulator is implemented using Tensorflow (https://www.tensorflow.org), an

open-source and widely used deep learning framework. The code for training the neural network

emulators used here can be found under https://git.ecmwf.int/projects/MLFET/repos/maelstrom-

radiation. Tensorflow provides access to different features and methods that facilitate the definition

of the model architecture and its training. A fundamental part of training and optimising a neural

https://www.tensorflow.org/
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 14

network relies on the backpropagation algorithm. Using the chain rule, backpropagation performs a

backward pass adjusting the model’s parameter after each forward pass.

While most of the complexity of this algorithm is abstracted away from the user when using

Tensorflow, it is still possible to watch and access the gradients computed across the model, using

the API ‘tf.GradientTape’1. This API provides easy access to automatic differentiation so that it

first records any relevant operations executed within the API context into a “tape” and then uses

reverse mode differentiation to compute the gradients about some specified inputs. This concept of

GradientTape is specific to Tensorflow, but it is worth pointing out that other common deep learning

frameworks like Pytorch or JAX also provide access to similar APIs to access the gradients.

As already introduced in previous sections, the derivation of the TL model can be performed by

constructing the Jacobian matrix. To obtain the Jacobian with tf.GradientTape one can use the

method tf.GradientTape.jacobian. Below we provide a pseudocode example to better

understand how this method works and how it can be used in the context of TL model derivation

using neural networks:

trained_model_path = ‘trained_model.h5’
model = tf.keras.models.load_model(trained_model_path)

x= tf.random.uniform([3,6]) # Input Variable

with tf.GradientTape() as tape:

 y=model(x)

J = tape.jacobian(y, x)

Assuming we have an already trained model stored under a given path, the model is loaded with

TensorFlow to generate a new prediction for a given input 𝑥. To correctly track the gradients across

the operations that take place inside the model, the inference step needs to be defined within the

GradientTape context. Assuming the input vector 𝑥 has a shape 𝑚, and output vector 𝑦 has a

shape of 𝑛, the resulting Jacobian matrix 𝐽 will have a shape equal to 𝑛 × 𝑚. Summing over the

output’s dimension, it is possible to obtain the gradients that would have been calculated using

tf.GradientTape.gradient.

By default, a tape allows one to compute one set of gradients. To compute multiple gradients or

higher-order gradients like the Hessian Matrix, the tape has to be created using

persistent=True. When working with machine learning models, it is also very common to

define your dataset in samples of a given batch size. Following the example from above, we would

have the input vector 𝑥 with a shape (𝑏, 𝑚) where 𝑏 would refer to the batch size and the output

vector 𝑦 would have a shape (𝑏, 𝑛), and a Jacobian matrix 𝐽 with shape (𝑏, 𝑛, 𝑏, 𝑚). If there is

independence between 𝑥[𝑖, :] and 𝑦[𝑗, :] for 𝑗 ≠ 𝑖, then there is a more efficient computation of

the Jacobian available via tf.GradientTape.batch_jacobian that would return a matrix of

shape (𝑏, 𝑛, 𝑚) that stores the diagonal values as rows.

1 https://www.tensorflow.org/api_docs/python/tf/GradientTape

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 15

When dealing with multiple inputs and multiple outputs, it is still possible to use the

GradientTape API to compute the Jacobian as the input 𝑥 can take other data types like for

example dictionaries, where each entry of the dictionary refers to one of the input variables. Output

variables can equally be a dictionary where each entry refers to a different variable. However in that

case, tf.GradientTape.jacobian would be required to compute the Jacobian for each

combination of output-input variables.

Approaching the TL via the construction of the Jacobian is not the most computationally efficient

approach, but means this cost is still estimated to be small when leveraging GPUs. The advantage of

this approach is that the AD model can be trivially generated via the transpose of the Jacobian, and

the symmetry property will be satisfied to the level of numerical precision used.

5.3 Deriving TL and AD models for the radiative transfer emulator

The emulation radiative transfer process for short-wave and long-wave radiations represents a

multiple input/multiple output problem where a deep learning model predominantly based on RNN

architecture, specifically using LSTM blocks, is used to propagate information in the vertical

dimension. In particular, the model receives input profiles of atmospheric state and composition

that can be divided into full model levels (137 levels in the IFS model), model half-levels (138 levels),

model interfaces (136 levels) & surface variables (scalars). As outputs, the model provides

downwards and upwards fluxes as well as the resulting heating rates that can be derived from those

fluxes.

Using an already trained model for short-wave radiation, we aim to assess if the TL model can be

derived using the nonlinear model's automatically generated gradients. Since the AD model

formulation here uses the transpose of the Jacobian matrix, the symmetry between TL and AD will

be naturally satisfied to numerical precision. Focus will be spent in evaluating the TL property, but

the AD model can easily be generated with this approach.

The heating rates are obtained from the fluxes according to the equation:

where 𝐹𝑛 denotes the net flux (downwards minus upwards), 𝑝 is the pressure, 𝑔 is the gravitational

constant, 𝑐𝑝 is the specific heat at constant pressure of most air, and 𝑖 refers to the vertical index.

As such, the heating rate TL and AD models can be ignored.

Generally, the trained model can be written as a vector-valued function that maps an input 𝑥 to an

output 𝑦:

𝑦 = 𝑭(𝑥)

Here, the TL of the model is given by:

𝛿𝑦 = 𝑭(𝑥, 𝛿𝑥) = 𝑲(𝑥)𝛿𝑥

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 16

In case of r the radiative transfer the input 𝑥 contains a set of different variables which can be

decomposed as follows;

𝛿𝑦 = 𝐅(𝑥, 𝛿𝑥) = 𝐊(𝑥)𝑆𝑈𝑅𝐹𝛿𝑥𝑆𝑈𝑅𝐹 + 𝐊(𝑥)𝐹𝐿𝛿𝑥𝐹𝐿 + 𝐊(𝑥)𝐻𝐿𝛿𝑥𝐻𝐿 + 𝐊(𝑥)𝐼𝛿𝑥𝐼

Here, 𝑆𝑈𝑅𝐹 refers to input surface variables (skin temperature, solar zenith angle and albedos), 𝐹𝐿

refers to the input full-level variables (humidity, cloud fraction, etc), 𝐻𝐿 to input half-level variables

(temperature and pressure) and 𝐼 refer to the interface fields.

5.4 Testing methodology

Here, we present results for a perturbation of one input field to the radiative transfer scheme. This is

presented to provide easier and more concise analysis, as the dimensionality of the input state for

either shortwave or longwave radiative transfer is large. The results shown here, for humidity

perturbations, are representative of the other variables tested.

Once a Jacobian has been constructed, the last remaining piece is testing the models with plausible

increments to the physical state. It is important that the perturbations tested are, to some level,

physical. Otherwise the neural network may be asked to generalise to completely unseen physical

states, which may lead to irregular gradient information. Ideally, one would use increments from the

data assimilation process, to give a true test of the application. Unfortunately the full state of

increment information used during data assimilation at ECMWF is not stored, so this cannot be

achieved without significant overhead. In its place, we instead generate plausible perturbations by

calculating the spatial increment between a column and a nearby neighbour column. We tested

different variations to compute the spatial increment. Although the results were similar among

those tests, we opted to define the perturbation profile as the difference between a reference

column (generally column 0) and a close-by column (column 4) to obtain a profile with perturbation

magnitudes that were neither too extreme nor too simple. By selecting this approach, both the

original input state and the perturbed state come from realistic states of the atmosphere. Figure 3

shows the spatial variation in humidity inputs and how different amplitudes of perturbation will

affect the humidity field.

Figure 3: Computation of spatial perturbation between adjacent columns. The figure on the left

shows the vertical profile for humidity of 8 different columns located in South Africa at midday. The

figure in the middle displays the spatial increment for humidity where column 0 is used as a

reference. Based on the magnitude of the humidity differences, we choose ‘col4-col0’ as a plausible

perturbation. The right figure shows how the selected perturbed profile is applied on top of the

original humidity profile for a given column for a range of alphas.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 17

5.5 Results

Figure 4 shows results from a single (illustrative) column, comparing the neural network and the

finite difference TL models. Here various values of alpha are used that represent the perturbation

amplitudes to the humidity profile. The sensitivity of the downwards and upwards models have

differing sensitivities, as could be expected from the physical processes. For downwards fluxes,

sensitivity is only expected below the level where humidity takes an active role in the radiative

transfer. This is seen for both neural network and finite difference versions. For upwards fluxes,

perturbations to the humidity in the troposphere change the amount of energy that is reflected back

upwards. Hence the outgoing fluxes show sensitivity higher in the atmosphere, at and above the

levels where humidity is perturbed. Near the top of the IFS model’s atmosphere, the sensitivity of

upwards fluxes to humidity changes is near constant. Again this is captured by both gradient models.

Only for the largest amplitude perturbations of humidity,we see significant differences between

neural network and finite difference estimates.

Figure 4: Comparison between the finite difference and Jacobian tangent-linears for the downwards

(left) and upwards (right) fluxes when perturbations to humidity are made. For the largest alphas,

differences are detectable in the upwards fluxes, but otherwise both outputs are indistinguishable.

In Figure 5 and 6,the ratio of the Jacobian-based neural network TL over the finite difference

estimate is plotted. For both figures, 8 representative columns are shown, to show the variation in

the behaviour. All 8 are neighbours in the atmosphere, but testing highlighted that these columns

were representative of the general behaviour. Here green shading represents a ratio of one, i.e. the

neural network and finite difference versions satisfy the desired relationship. Figure 5 shows the

behaviour of the downward fluxes for humidity perturbations, Figure 6 illustrates the same but for

upward fluxes. This type of plot can quickly highlight where the two approaches for TL generation

differ significantly.

Due to the directionality of the shortwave process, and lack of humidity in the upper 60 layers of the

atmosphere, there is little sensitivity to humidity perturbations for downwards fluxes. The finite

different TL amplitudes are small, and thus, the use of a relative error becomes problematic and the

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 18

ratio becomes noisy. Lower in the atmosphere, and for the full profile of upwards fluxes, there is

overall a wide range of 𝛼 for which the ratio is close to one, and hence the two TL models are

comparable. However, significant deviations from one are apparent for a small number of layers in

some example columns for both, the downwards and upwards fluxes.. One example is visible near

model level 120 for the downwards fluxes in example column number 6.

Figure 5: Ratio of the neural network Jacobian-based TL estimate, over the finite difference estimate.

Green shows the ideal ratio of one. The x-axis denotes the value of alpha used, i.e. the amplitude of

the perturbation (see the first equation in 3.1.3). The y-axis shows this ratio for different model levels,

i.e. heights in the atmospheric model. Grey denotes where the denominator, i.e. the finite-difference

estimate, has a value less than 10-4. The 8 subplots denote 8 columns, chosen over Africa during

midday.

Figure 6: As with figure 5 but for upward fluxes.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 19

Examination of other locations, as well as perturbations to other input variables, provides

consistent results with those presented here for humidity. For the majority of the levels, and for a

wide range of amplitudes of perturbations, the neural-network TL behaves similarly to the finite

difference estimate. The quality of the match is considered sufficiently good that online testing

constitutes a worthwhile endeavour.

6 Conclusions and exploitation

Here we have examined the validity of using neural networks to generate tangent-linear and adjoint

models of parametrised physics, for use within variational data assimilation in numerical weather

prediction.

For the relatively simple process of non-orographic gravity wave drag, offline and online testing has

been carried out with success. Compared against manually derived models, which are considered as

a benchmark, there is almost no statistically significant degradation found when using neural

networks. This proof of concept motivated further testing with the more challenging radiative

transfer parameterisation scheme.

For radiative transfer, featuring far more complex neural network solutions, offline testing of the

smoothness of automatically derived tangent-linear models has been carried out. For a wide range

of perturbation amplitudes, the neural network-based TL model is close to the finite difference

version. There are only rare exceptions where the two deviate.

Several avenues exist to further improve the quality of the neural network TL models. Firstly, the

radiative transfer shortwave model was not trained with weight decay, which encourages non-active

elements of the neural network to be switched off. Such an approach may help to create even

smoother models. Secondly, the use of reduced numerical precision should be explored to

understand its possible role in the noisy estimates.

The broadly positive outcome of this testing is a necessary but not sufficient condition for success

within variational data assimilation. The results are considered positive enough to invest in online

testing of the approach, which will happen after the end of MAELSTROM. For this purpose, the

library Infero2 must be expanded in functionality, to expose the creation of Jacobians within the

Fortran interface.

Success in online testing would be a major result for variational data assimilation methods. As

stressed in the introduction, simplications and inconsistencies are currently present in variational

data assimilation resulting from the complexity of human-generated tangent-linear and adjoint

models. If this could be automated, via the creation of training datasets, training of emulators, and

then the use of automatic differentiation, it would provide a blueprint for future successful

integration into operational weather forecasting model chains..

2 https://github.com/ecmwf/infero

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 20

7 References

Bonavita, M., Hólm, E., Isaksen, L. and Fisher, M., 2016. The evolution of the ECMWF hybrid data

assimilation system. Quarterly Journal of the Royal Meteorological Society, 142(694), pp.287-303.

Chantry, M., Hatfield, S., Dueben, P., Polichtchouk, I. and Palmer, T., 2021. Machine learning

emulation of gravity wave drag in numerical weather forecasting. Journal of Advances in Modeling

Earth Systems, 13(7), p.e2021MS002477.

Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation.

Ocean dynamics, 53, pp.343-367.

Hatfield, S., Chantry, M., Dueben, P., Lopez, P., Geer, A. and Palmer, T., 2021. Building tangent‐

linear and adjoint models for data assimilation with neural networks. Journal of Advances in Modeling

Earth Systems, 13(9), p.e2021MS002521.

Morcrette, J.J., 1991. Radiation and cloud radiative properties in the European Centre for Medium

Range Weather Forecasts forecasting system. Journal of Geophysical Research: Atmospheres,

96(D5), pp.9121-9132.

Rawlins, F., Ballard, S.P., Bovis, K.J., Clayton, A.M., Li, D., Inverarity, G.W., Lorenc, A.C. and Payne,

T.J., 2007. The Met Office global four‐dimensional variational data assimilation scheme. Quarterly

Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied

meteorology and physical oceanography, 133(623), pp.347-362.

Shonk, J.K. and Hogan, R.J., 2008. Tripleclouds: An efficient method for representing horizontal cloud

inhomogeneity in 1D radiation schemes by using three regions at each height. Journal of Climate,

21(11), pp.2352-2370.

MAELSTROM 2021

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar 21

Document History

Version Author(s) Date Changes

 Name (Organisation) dd/mm/yyyy

1.0 Matthew Chantry 05/03/2024 Initial draft

1.1 Ana Prieto Nemesio 13/03/2024 Added section 5.2 and
5.4

1.2 Matthew Chantry 22/03/2024 Results section added

1.3 Peter Dueben & Ana Prieto
Nemesio

25/03/2024 Additional content,
remarks and
corrections

1.4 Matthew Chantry 26/03/2024 Changes
recommended by
review

Internal Review History

Internal Reviewers Date Comments

Michael Langguth (FJZ) 26/03/2024 Minor changes requested

Estimated Effort Contribution per Partner

Partner Effort

ECMWF 1PM

Total 1PM

This publication reflects the views only of the author, and the European High-Performance

Computing Joint Undertaking or Commission cannot be held responsible for any use which may be

made of the information contained therein.

