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1 Executive Summary 

This document reports on the prospects for the use of machine learning within data assimilation 

algorithms for weather forecasting. This is a special application of the work delivered in Application 3 

as part of Work Package 1. This application focused on the creation of emulators for components of 

weather forecasting models. Accurate emulators were created as documented in Deliverable 1.6. 

The emulators can, in principle, not only be used for the non-linear forecast model, but also as 

linearised versions (gradient versions) for forward and backward propagation in the 4DVar data 

assimilation framework at ECMWF. Gradient versions of these machine learning based emulators are 

here automatically generated using machine learning libraries, and their accuracy and stability are 

assessed. We document the motivation, results and prospects for future exploitation, and 

investigate whether the gradient version that is automatically generated from the machine learning 

libraries is sufficient for the high level of accuracy that is required in the data assimilation 

framework. If the gradient version turns out to be useful for 4DVar data assimilation, this opens 

another important use case for machine learning emulators in numerical weather predictions, 

additionally to the straight-forward use in the forward models.  
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2 Introduction 

2.1 About MAELSTROM 

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and 

solution accuracy. Customised compute systems will be designed that are optimised for application 

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward needs of weather and 

climate applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with compute system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the 

workflow of weather and climate predictions including the processing of observations, the 

assimilation of observations to generate initial and reference conditions, model simulations, as well 

as post-processing of model data and the development of forecast products. For each application, 

benchmark datasets with up to 10 terabytes of data will be published online for training and 

machine learning tool-developments at the scale of the fastest supercomputers in the world. 

MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning 

applications on supercomputers in the future. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

To document the prospects for the use of automatically generated gradients of machine learning 

emulators within gradient-based data assimilation algorithms. 

2.2.2 Work performed in this deliverable 

Machine learning emulators developed in previous deliverables in for Application 3 of Work Package 

1 have been tested to assess the behaviour of automatically generated gradient information. The 

smoothness and stability of these gradients have been measured.  

2.2.3 Deviations and counter measures 

No significant deviations occurred and no counter measures were required. 
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3 Background 

3.1 4D-var data assimilation 

3.1.1 Introduction 

In weather forecasting, data assimilation refers to the process of determining the current model 

state of the atmosphere to utilise it as the initial conditions for subsequent weather predictions. This 

is a minimisation problem, where one seeks to find the state of a weather forecasting model that 

best fits observations over a window of time. Multiple algorithms are currently used by operational 

weather forecasting centres in their daily activities, particularly prevalent are ensemble Kalman filter 

(EnKF, Evensen 2003) approaches and variational data assimilation methodologies, including 3D- and 

4D-var. At ECMWF, an incremental (ensemble) 4D-var technique is used (Bonavita et al. 2016). In 

ECMWF’s implementation of incremental 4D-var, atmospheric state gradients are propagated 

forward and backward through the IFS, ECMWF’s operational (physical) weather forecasting model. 

These provide the necessary information to increment the initial estimate of the atmosphere to 

better match the observations. Via an iterative approach, the initial state is incremented multiple 

times towards a more optimal estimate of the current atmospheric state. To operate this method, 

additional versions of the IFS are required to propagate these gradients. For the components of the 

IFS, e.g. for each parameterised physical process, tangent-linear (TL) and adjoint (AD) versions of the 

nonlinear components must be derived. The TL calculates how an increment to the input 

atmospheric state increments the output. The adjoint model acts as an inverse to the TL model, and 

when provided with an initial state of the atmosphere, and an increment to the output state, 

provides the increment to the input state.  

Currently, at ECMWF, the derivation and maintenance of TL and AD models is a task managed by 

hand, with humans deriving and coding these models. For some components, where strong 

nonlinearities exist, reformulation is required to ensure a necessary level of smoothness, e.g. via “IF” 

statements in the code. This derivation and maintenance has a significant cost, often resulting in 

further simplifications/approximations. For example, at the UK Met Office, a simplified set of physics 

schemes is used in data assimilation (Rawlins et al. 2007). At ECMWF, some areas of TL and ADcode 

have not been kept up with developments for the nonlinear forecasting model, meaning that 

advances in physical modelling are not being fully utilised in data assimilation. Radiative transfer is 

one example of this, where the older, less accurate, Morcrette scheme is the basis  for the TL/AD 

versions within 4D (Morcrette 1991). By contrast the more recent TripleClouds scheme (Shonk and 

Hogan 2008) within the ecRad radiation scheme is used in the forecasting model. An upgrade of the 

TL/AD code to match the more complex ecRad scheme would almost certainly lead to improvements 

in forecast scores. However, the generation of such TL/AD code by hand is time consuming, and 

represents a significant amount of work. 

Here lies the opportunity for machine learning. Within MAELSTROM, highly accurate emulators of 

the TripleClouds radiative transfer scheme have been trained using neural networks. In Deliverable 

1.6, we document that emulators are stable and accurate even when coupled to the full IFS weather 

forecasting model. These emulators are written in Python-based machine learning frameworks, here 

Tensorflow, which provide auto-differentiability functionality. Such auto-differentiability is normally 

used to train the emulators, but can be deployed to generate TL and AD models, even for complex 

neural networks. The task of auto-differentiation is natural for machine learning tools such as 
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Tensorflow as it is also required to perform the backpropagation during the optimisation of weights 

in the neural networks. 

In this deliverable, we demonstrate how auto-differentiability may be used for the derivation of TL 

and AD models, and test offline the behaviour of these models. We will begin by exploring this topic 

in the setting of a simpler parametrised physics scheme,  the non-orographic gravity wave drag. We 

will then move onto the topic of radiative transfer. 

3.1.2 TL and AD equations 

For a model,       , with  𝐊(𝑥)  denoting the Jacobian matrix of partial derivatives of        evaluated at 

𝑥. Then the TL is written as 

    𝛿𝑦 =  𝐊(𝑥) 𝛿𝑥 

The adjoint is written 

  𝐴𝑑𝑗𝑜𝑖𝑛𝑡 =  𝐊(𝑥)𝑇𝛿𝑦    

where 𝑇 denotes the transpose. These equations must be calculated for the parametrised physics 

schemes. 

3.1.3 TL and AD tests 

For stable and accurate convergence, two properties are required from the TL and AD models and 

their relationship to the nonlinear model. These are necessary but not sufficient conditions for 

successful use within data-assimilation.  

First, for small increments to the state, the TL should be close to a finite difference estimation. 

Mathematically, for a model,       , with the corresponding TL version, F, the following expression    

𝑙𝑖𝑚
𝑎→0

[     (𝑥0 + 𝛼𝛿𝑥)  −     (𝑥0)  − 𝐅(𝑥0)𝛼𝛿𝑥]  =  0    

should hold for plausible perturbations 𝛿𝑥. This test essentially measures the accuracy of the TL 

model as a first-order Taylor approximation to the nonlinear model. 

Secondly, the symmetry between the TL and adjoint models should be preserved. 

[ 𝐅(𝑥0)𝛿𝑥 ]𝑇𝛿𝑦 = 𝛿𝑥𝑇  [ 𝐅𝑇(𝑥0)𝛿𝑦 ] 

where 𝛿𝑦 is an arbitrary vector. 

In this deliverable, we primarily assess these two tests, where the TL and AD models are calculated 

using auto-differentiability of a neural network emulator. 

4 Non-orographic gravity wave drag 

In work preceding MAELSTROM, a machine learning emulator was developed for the non-orographic 

gravity wave drag (NOGWD) process (Chantry et al. 2021). This process is important for stratospheric 

predictability, in particular for the quasi-biennial oscillation (QBO). For non-orographic gravity wave 

drag, a simple machine learning solution was sufficient, requiring a multi-layer perceptron. For this 

process, both TL and AD models already exist within the IFS, meaning that the accuracy of the ML-
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based TL/AD estimation method can be directly compared with the human-derived equivalents that 

are used daily in operational forecasting. The work described below was published in Hatfield et al 

2021, where further details can be found. 

4.1 Deriving TL and AD models for NOGWD  

For simple neural networks, the automatic differentiation feature of machine learning frameworks is 

not required, as manual derivation of these is relatively straightforward, as detailed in Hatfield et al., 

2021. Using the manual derivation approach enables their integration in Fortran, the programming 

language used for the IFS. Code for calling the TL and AD versions of the neural network was written 

in Fortran, and tested in the IFS. Despite the fact that a human remains in this process, it is still an 

instructive test, as it measures the smoothness of machine learning based emulators to 

perturbations in the input and output state. 

4.2 Testing TL and AD properties 

Firstly, we test the necessary conditions for stable and accurate convergence in Section 3.1.3 that 

describe the relationship between the TL and the finite difference estimate, as well as the TL and AD. 

Figure 1 (taken from Hatfield et al 2021) shows the change in accuracy of the TL test, compared with 

physics-based nonlinear and TL models. In the easy test, machine learning is used for both the 

nonlinear model and TL model. This test therefore measures the accuracy of the neural network’s 

estimated derivative. In the “hard” test the physics-based nonlinear model is used for the finite-

difference estimate, but the neural network is used to estimate the TL. In both tests, the neural 

network-based TL behaves similarly to the physics-based TL, with the “easy” test slightly 

outperforming the full physics solution and the “hard” test providing a minor degradation. Overall 

the neural network derivative shows a comparable accuracy to the physics-based hand derivation. 
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Figure 1: Comparison between the neural network TL and hand-derived TL in remaining close to a 

Taylor approximation of the nonlinear model (see Hatfield et al. 2021 for further technical details). 

Negative numbers indicate a better fit for the neural network, and positive a worse fit. For the “easy” 

test, where the neural network derivative is compared to the neural network itself the fit is equal or 

improved. When the neural network derivative is used to estimate the physical nonlinear model, the 

fit is somewhat degraded at the top of the atmosphere.  

 

When assessing the second test described in section 3.1.3, the adjoint test, we measure the 

symmetry in a wide number of scenarios of input and output perturbations to the neural network 

state. In summary, we find that this symmetry property is maintained to at least 9 decimal places 

across all tests (see Hatfield et al. 2021 for further details).  

The neural network-based TL and ADmodels both are considered to have successfully passed  the 

offline tests, meaning that these models can be tested within a full data assimilation minimisation 

process. 

 

4.3 Testing TL and AD models within data assimilation 

As described above, the tests in Section 4.2 are considered necessary but not sufficient for success in 

data assimilation. Here, we test the full use of the derivative models within the IFS’s data 

assimilation algorithm. We assessed the effectiveness of our neural network-based TL and AD 

models in data assimilation through a series of 4D-Var data assimilation experiments. The 

experiment ran continuously throughout the winter season, from December 1st, 2018 to February 

28th, 2019. We implemented 4D-Var data assimilation cycles every 12 hours, and 10-day forecasts 

were generated from the final analysis produced by each cycle. Forecasts were run at TCo399, 
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approximately equivalent to a 25 km resolution. This was used for both the reference and test runs. 

For further details on the configuration of the tests carried out see Hatfield et al. 2021. 

Figure 2: The relative differencein root-mean-square error of temperature of experiment NN 

compared with the reference experiment (REF, blue indicates that NN is better than REF) averaged in 

the zonal direction and across all forecasts in the three-monthly experimental period, for a number of 

forecast lead times (indicated in each subfigure title by “T+” with the number of hours after the initial 

time). The relative difference is computed by dividing by the error of REF. Hatching indicates that 

differences are significant with 95% confidence, and the sparsity of hatching indicates that the error 

difference is for the most part not statistically significant. (Figure taken from Hatfield et al. 2021.) 

 

Figure 2 shows the change in accuracy of historical weather forecasts when using the NOGWD neural 

networks for the TL and AD models. Overall the accuracy changes  are minimal, with almost no 

statistically significant degradation shown. This can be therefore viewed as a successful test. 
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4.4 Summary of NOGWD 

In both offline and online tests, the neural network emulator-based TL and AD models were 

successful in providing gradient information, enabling accurate data assimilation to be carried out. 

However, it should be emphasised that non-orographic gravity wave drag is one of the simpler and 

less impactful parameterisation schemes in a weather forecasting model. This does not impact the 

validity of the results, but should provide caution in extrapolating to other, more nonlinear and more 

impactful parametrisation schemes. We therefore moved on to test radiative transfer, which will be 

a more challenging test of the approach. 

5 Radiative transfer 

5.1 Background on radiative transfer 

The radiative transfer processes within a weather forecasting model capture longwave and shortwave 

heating and cooling, involving interactions with clouds, aerosols and the land surface. These processes 

are physically well understood, but their computation is too  expensive to fully capture them in a 

weather or climate forecasting model. Therefore approximations are made to create computationally 

affordable, yet accurate, estimates of the processes. This is an area of continual development, with 

new approximations and algorithms to achieve better estimates within a computational budget. 

Ideally, for operational centres using variational approaches for data assimilation, new TL and AD 

versions would be required whenever an update to the nonlinear radiation scheme is operationalised. 

Unfortunately, due to the laborious work and time involved in hand-deriving these models, this is not 

always possible, and thus, there are inconsistencies between models used in the forecasting model 

and those used within the data assimilation minimisation. 

In MAELSTROM, focus has been on learning an emulator of the Tripleclouds solver within ecRad, which 

is used operationally in the IFS. As reported in Deliverable 1.6, these emulators have been tested not 

only in isolation, but also when coupled to the IFS for weather forecast experiments. In all tests, the 

emulator is exceptionally accurate, with minimal deviations seen when compared with the reference 

model. Bespoke LSTM-based solutions were created, which mimic the information flow of the physical 

system. 

Here, we will focus on the shortwave model, which constitutes one of the two trained and tested 

models. Similarly to the NOGWD results, we wish to test the accuracy of the TL and AD models. 

However, due to the significantly increased complexity of these models when compared with the fully-

connected neural networks used in NOGWD, a hand-derivation of the neural network gradients is far 

less appealing. Instead we used the automatic differentiation provided by the Tensorflow framework 

to construct these models.  

5.2 Deriving TL and AD models using Tensorflow 

The radiative transfer emulator is implemented using Tensorflow (https://www.tensorflow.org), an 

open-source and widely used deep learning framework. The code for training the neural network 

emulators used here can be found under  https://git.ecmwf.int/projects/MLFET/repos/maelstrom-

radiation. Tensorflow provides access to different features and methods that facilitate the definition 

of the model architecture and its training. A fundamental part of training and optimising a neural 

https://www.tensorflow.org/
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation
https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation
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network relies on the backpropagation algorithm. Using the chain rule, backpropagation performs a 

backward pass adjusting the model’s parameter after each forward pass.  

While most of the complexity of this algorithm is abstracted away from the user when using 

Tensorflow, it is still possible to watch and access the gradients computed across the model, using 

the API ‘tf.GradientTape’1. This API provides easy access to automatic differentiation so that it 

first records any relevant operations executed within the API context into a “tape” and then uses 

reverse mode differentiation to compute the gradients about some specified inputs. This concept of 

GradientTape is specific to Tensorflow, but it is worth pointing out that other common deep learning 

frameworks like Pytorch or JAX  also provide access to similar APIs to access the gradients.  

As already introduced in previous sections, the derivation of the TL model can be performed by 

constructing the Jacobian matrix. To obtain the Jacobian with tf.GradientTape one can use the 

method tf.GradientTape.jacobian. Below we provide a pseudocode example to better 

understand how this method works and how it can be used in the context of TL model derivation 

using neural networks:  

trained_model_path = ‘trained_model.h5’ 
model = tf.keras.models.load_model(trained_model_path) 
 
x= tf.random.uniform([3,6]) # Input Variable  
 
with tf.GradientTape() as tape: 

    y=model(x)  

J = tape.jacobian(y, x)  

Assuming we have an already trained model stored under a given path,  the model is loaded with 

TensorFlow to generate a new prediction for a given input 𝑥. To correctly track the gradients across 

the operations that take place inside the model, the inference step needs to be defined within the 

GradientTape context.  Assuming the input vector 𝑥 has a shape 𝑚, and output vector 𝑦 has a 

shape of 𝑛, the resulting Jacobian matrix 𝐽 will have a shape equal to 𝑛 × 𝑚. Summing over the 

output’s dimension, it is possible to obtain the gradients that would have been calculated using 

tf.GradientTape.gradient. 

By default, a tape allows one to compute one set of gradients.  To compute multiple gradients or 

higher-order gradients like the Hessian Matrix, the tape has to be created using 

persistent=True. When working with machine learning models, it is also very common to 

define your dataset in samples of a given batch size. Following the example from above, we would 

have the input vector 𝑥 with a shape (𝑏, 𝑚) where 𝑏 would refer to the batch size and  the output 

vector 𝑦 would have a shape (𝑏, 𝑛), and a Jacobian matrix  𝐽  with shape (𝑏, 𝑛, 𝑏, 𝑚). If there is 

independence between 𝑥[𝑖, : ]  and  𝑦[𝑗, : ] for 𝑗 ≠ 𝑖, then there is a more efficient computation of 

the Jacobian available via tf.GradientTape.batch_jacobian that would return a matrix of 

shape (𝑏, 𝑛, 𝑚) that stores the diagonal values as rows.  

 
1 https://www.tensorflow.org/api_docs/python/tf/GradientTape 



MAELSTROM 2021 

 
 

D1.5 Report on tests with a tangent-linear and adjoint version of ML emulators with 4Dvar  15 
 

When dealing with multiple inputs and multiple outputs,  it is still possible to use the 

GradientTape API to compute the Jacobian as the input 𝑥 can take other data types like for 

example dictionaries, where each entry of the dictionary refers to one of the input variables. Output 

variables can equally be a dictionary where each entry refers to a different variable. However in that 

case, tf.GradientTape.jacobian would be required  to compute the Jacobian for each 

combination of output-input variables.   

Approaching the TL via the construction of the Jacobian is not the most computationally efficient 

approach, but means this cost is still estimated to be small when leveraging GPUs. The advantage of 

this approach is that the AD model can be trivially generated via the transpose of the Jacobian, and 

the symmetry property will be satisfied to the level of numerical precision used.  

5.3 Deriving TL and AD models for the radiative transfer emulator 

The emulation radiative transfer process for short-wave and long-wave radiations represents a 

multiple input/multiple output problem where a deep learning model predominantly based on RNN 

architecture, specifically using LSTM blocks, is used to propagate information in the vertical 

dimension. In particular, the model receives input profiles of atmospheric state and composition 

that can be divided into full model levels (137 levels in the IFS model), model half-levels (138 levels), 

model interfaces (136 levels) & surface variables (scalars). As outputs, the model provides 

downwards and upwards fluxes as well as the resulting heating rates that can be derived from those 

fluxes.  

 

Using an already trained model for short-wave radiation, we aim to assess if the TL model can be 

derived using the nonlinear model's automatically generated gradients.  Since the AD model 

formulation here uses the transpose of the Jacobian matrix, the symmetry between TL and AD will 

be naturally satisfied to numerical precision. Focus will be spent in evaluating the TL property, but 

the AD model can easily be generated with this approach. 

 

The heating rates are obtained from the fluxes according to the equation: 

 
where 𝐹𝑛 denotes the net flux (downwards minus upwards), 𝑝 is the pressure, 𝑔 is the gravitational 

constant, 𝑐𝑝  is the specific heat at constant pressure of most air, and 𝑖 refers to the vertical index. 

As such, the heating rate TL and AD models can be ignored. 

 

Generally, the trained model can be written as a vector-valued function that maps an input 𝑥 to an 

output 𝑦: 

 

𝑦 = 𝑭(𝑥) 

Here, the TL of the model is given by: 

 

𝛿𝑦 = 𝑭(𝑥, 𝛿𝑥) = 𝑲(𝑥)𝛿𝑥  
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In case of r the radiative transfer  the input 𝑥 contains a set of different variables which can be 

decomposed as follows; 

𝛿𝑦 =  𝐅(𝑥, 𝛿𝑥)  = 𝐊(𝑥)𝑆𝑈𝑅𝐹𝛿𝑥𝑆𝑈𝑅𝐹 + 𝐊(𝑥)𝐹𝐿𝛿𝑥𝐹𝐿 + 𝐊(𝑥)𝐻𝐿𝛿𝑥𝐻𝐿 + 𝐊(𝑥)𝐼𝛿𝑥𝐼 

Here, 𝑆𝑈𝑅𝐹 refers to input surface variables (skin temperature, solar zenith angle and albedos),  𝐹𝐿  

refers to the input full-level variables (humidity, cloud fraction, etc),  𝐻𝐿  to input half-level variables 

(temperature and pressure) and 𝐼 refer to the interface fields.  

 

5.4 Testing methodology 

Here, we present results for a perturbation of one input field to the radiative transfer scheme. This is 

presented to provide easier and more concise analysis, as the dimensionality of the input state for 

either shortwave or longwave radiative transfer is large. The results shown here, for humidity 

perturbations, are representative of the other variables tested. 

Once a Jacobian has been constructed, the last remaining piece is testing the models with plausible 

increments to the physical state. It is important that the perturbations tested are, to some level, 

physical. Otherwise the neural network may be asked to generalise to completely unseen physical 

states, which may lead to irregular gradient information. Ideally, one would use increments from the 

data assimilation process, to give a true test of the application. Unfortunately the full state of 

increment information used during data assimilation at ECMWF is not stored, so this cannot be 

achieved without significant overhead. In its place, we instead generate plausible perturbations by 

calculating the spatial increment between a column and a nearby neighbour column. We tested 

different variations to compute the spatial increment. Although the results were similar among 

those tests, we opted to define the perturbation profile as the difference between a reference 

column (generally column 0) and a close-by column (column 4) to obtain a profile with perturbation 

magnitudes that were neither too extreme nor too simple. By selecting this approach, both the 

original input state and the perturbed state come from realistic states of the atmosphere. Figure 3 

shows the spatial variation in humidity inputs and how different amplitudes of perturbation will 

affect the humidity field.  

    

Figure 3: Computation of spatial perturbation between adjacent columns. The figure on the left 

shows the vertical profile for humidity of 8 different columns located in South Africa at midday. The 

figure in the middle displays the spatial increment for humidity where column 0 is used as a 

reference.  Based on the magnitude of the humidity differences, we choose ‘col4-col0’ as a plausible 

perturbation. The right figure shows how the selected perturbed profile is applied on top of the 

original humidity profile for a given column for a range of alphas.  
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5.5 Results 

Figure 4  shows results from a single (illustrative) column, comparing the neural network and the 

finite difference TL models. Here various values of alpha are used that represent the  perturbation 

amplitudes to the humidity profile. The sensitivity of the downwards and upwards models have 

differing sensitivities, as could be expected from the physical processes. For downwards fluxes, 

sensitivity is only expected below the level where humidity takes an active role in the radiative 

transfer. This is seen for both neural network and finite difference versions. For upwards fluxes, 

perturbations to the humidity in the troposphere change the amount of energy that is reflected back 

upwards. Hence the outgoing fluxes show sensitivity higher in the atmosphere, at and above the 

levels where humidity is perturbed. Near the top of the IFS model’s atmosphere, the sensitivity of 

upwards fluxes to humidity changes is near constant. Again this is captured by both gradient models. 

Only for the largest amplitude perturbations of humidity,we see significant differences between 

neural network and finite difference estimates. 

 

Figure 4: Comparison between the finite difference and Jacobian tangent-linears for the downwards 

(left) and upwards (right) fluxes when perturbations to humidity are made. For the largest alphas, 

differences are detectable in the upwards fluxes, but otherwise both outputs are indistinguishable.   

 

In Figure 5 and 6,the ratio of the Jacobian-based neural network TL over the finite difference 

estimate is plotted. For both figures, 8 representative columns are shown, to show the variation in 

the behaviour. All 8 are neighbours in the atmosphere, but testing highlighted that these columns 

were representative of the general behaviour. Here green shading represents a ratio of one, i.e. the 

neural network and finite difference versions satisfy the desired relationship. Figure 5 shows the 

behaviour of the downward fluxes for humidity perturbations, Figure 6 illustrates the same but for 

upward fluxes. This type of plot can quickly highlight where the two approaches for TL generation 

differ significantly.  

Due to the directionality of the shortwave process, and lack of humidity in the upper 60 layers of the 

atmosphere, there is little sensitivity to humidity perturbations for downwards fluxes. The finite 

different TL amplitudes are small, and thus, the use of a relative error becomes problematic and the 
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ratio becomes noisy. Lower in the atmosphere, and for the full profile of upwards fluxes, there is 

overall a wide range of 𝛼 for which the ratio is close to one, and hence the two TL models are 

comparable. However, significant deviations from one are apparent for a small number of layers in 

some example columns for both, the downwards and upwards fluxes.. One example is visible near 

model level 120 for the downwards fluxes in example column number 6. 

 

Figure 5: Ratio of the neural network Jacobian-based TL estimate, over the finite difference estimate. 

Green shows the ideal ratio of one. The x-axis denotes the value of alpha used, i.e. the amplitude of 

the perturbation (see the first equation in 3.1.3). The y-axis shows this ratio for different model levels, 

i.e. heights in the atmospheric model. Grey denotes where the denominator, i.e. the finite-difference 

estimate, has a value less than 10-4. The 8 subplots denote 8 columns, chosen over Africa during 

midday. 

 

Figure 6: As with figure 5 but for upward fluxes. 
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Examination of other locations, as well as perturbations to other input variables, provides   

consistent results with those presented here for humidity. For the majority of the levels, and for a 

wide range of amplitudes of perturbations, the neural-network TL behaves similarly to the finite 

difference estimate. The quality of the match is considered sufficiently good that online testing 

constitutes a worthwhile endeavour. 

6 Conclusions and exploitation 

Here we have examined the validity of using neural networks to generate tangent-linear and adjoint 

models of parametrised physics, for use within variational data assimilation in numerical weather 

prediction.  

For the relatively simple process of non-orographic gravity wave drag, offline and online testing has 

been carried out with success. Compared against manually derived models, which are considered as 

a benchmark, there is almost no statistically significant degradation found when using neural 

networks. This proof of concept motivated further testing with the more challenging radiative 

transfer parameterisation scheme. 

For radiative transfer, featuring far more complex neural network solutions, offline testing of the 

smoothness of automatically derived  tangent-linear models has been carried out. For a wide range 

of perturbation amplitudes, the neural network-based TL model is close to the finite difference 

version. There are only rare exceptions where the two deviate.  

Several avenues exist to further improve the quality of the neural network TL models. Firstly, the 

radiative transfer shortwave model was not trained with weight decay, which encourages non-active 

elements of the neural network to be switched off. Such an approach may help to create even 

smoother models. Secondly, the use of reduced numerical precision should be explored to 

understand its possible role in the noisy estimates. 

The broadly positive outcome of this testing is a necessary but not sufficient condition for success 

within variational data assimilation. The results are  considered positive enough to invest in online 

testing of the approach, which will happen after the end of MAELSTROM. For this purpose, the 

library Infero2 must be expanded in functionality, to expose the creation of Jacobians within the 

Fortran interface.  

Success in online testing would be a major result for variational data assimilation methods. As 

stressed in the introduction, simplications and inconsistencies are currently present in variational 

data assimilation resulting from the complexity of human-generated tangent-linear and adjoint 

models. If this could be automated, via the creation of training datasets, training of emulators, and 

then the use of automatic differentiation, it would provide a blueprint for future successful 

integration into operational weather forecasting model chains..  

 

 
2 https://github.com/ecmwf/infero 
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