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1 Executive Summary

With the completion of the final benchmarking phase, this deliverable marks the
conclusion of Work Package 3 (WP3) within the MAELSTROM project. By synthesiz-
ing the findings presented herein, we aim to pinpoint the most effective hardware
configurations for the diverse range of applications. Additionally, this analysis will
aid in the selection of hardware best suited for the broader needs of the weather
and climate (W&C) applications as a collective entity. The insights garnered from
this endeavor will serve as the foundation for defining future architectural designs
tailored to W&C applications. Central to this document is the utilization of knowl-
edge acquired through an exhaustive benchmarking process. By leveraging these
insights, we endeavor to craft a robust and efficient architectural design capable
of meeting the rigorous demands of modern W&C activities. Our approach is in-
formed by key findings and outcomes detailed in previous deliverables pertaining
to the benchmarking phases. Through this concerted effort, we strive to advance
the capabilities and performance standards within the realm of W&C applications.
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2 Introduction

2.1 About MAELSTROM

MAELSTROM aims to create Europe’s next-generation computer architecture by co-
designing custom compute system designs for optimal application performance
and energy efficiency, along with a software framework to improve usability and
training efficiency for large-scale machine learning applications in weather and cli-
mate science.

To achieve this, MAELSTROM will benchmark these applications across various com-
puting systems based on energy consumption, time-to-solution, numerical preci-
sion, and solution accuracy. Customised compute systems will be designed that
are optimised for application needs in order to enhance Europes high-performance
computing portfolio and to pull recent hardware developments towards the unique
requirements of weather and climate applications. The MAELSTROM software frame-
work will enable scientists to apply and compare machine learning tools and li-
braries across a wide range of computer systems with ease. This will be supported
by a user interface that links application developers with compute system design-
ers. Also, during the development phase, automated benchmarking and error de-
tection of machine learning solutions will be conducted. These tools will be pub-
lished as open source.

The MAELSTROM machine learning applications will cover all the key components
involved in the workflow of weather and climate predictions. This includes process-
ing of observations, assimilation of observations to generate initial and reference
conditions, model simulations, as well as post-processing of model data and de-
velopment of forecast products. For each application, benchmark datasets with up
to 10 terabytes of data will be available online for training and machine learning
tool-development on the fastest supercomputers in the world. The machine learn-
ing solutions developed by MAELSTROM will serve as a blueprint for future machine
learning applications on supercomputers.
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2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

In the ongoing quest to optimize computational infrastructure for W&C applications,
the MAELSTROM project has conducted a series of benchmark analyses to evalu-
ate the performance of various hardware configurations under real-world computa-
tional loads. The culmination of this effort is detailed in Deliverable D3.7, marking
the third and final phase of our benchmarking endeavors, with previous phases
documented in Deliverables D3.4 and D3.6.
Over the course of the project, there has been a notable evolution in both the hard-
ware used for testing and the applications themselves. Initially, our benchmark
runs were conducted on NVIDIA V100 and A100 GPUs, representing the cutting-
edge technology at the time. However, as the project progressed, we transitioned
to testing on newer hardware, including the H100 GPUs, Graphcore IPU and the
GH200 superchip, reflecting the rapid advancements in computational technology.
Parallel to these hardware upgrades, the applications underwent significant devel-
opment. Through dedicated efforts from our developers team, each application has
been constantly refined and optimized, ensuring that our benchmarks accurately
reflect the current state of computational capability and efficiency. For an overview
and more detailed information on applications, please consult D1.4.
Given the dynamic nature of both the hardware landscape and application devel-
opment, this document, Deliverable D3.8, focuses mainly on the data and insights
from the most recent benchmarking run reported in D3.7. This approach allows us
to base our analysis on the most current and relevant information, ensuring that
our conclusions and recommendations are well-founded. Starting from this van-
tage point, we meticulously analyze the best-performing hardware configurations
for each application, aiming to identify the most effective and efficient solutions.
Ultimately, this document will not only highlight the top hardware configurations
across various applications but also select the most suited hardware for W&C ap-
plications as a whole. It is from this foundation that we will define the architectural
blueprint for future W&C applications. This blueprint seeks to leverage the insights
gained from our comprehensive benchmarking process to construct a computa-
tional infrastructure that is both powerful and efficient, capable of meeting the
demanding requirements of modern W&C tasks.
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2.2.2 Work performed in this deliverable

The previous benchmarking analysis encompasses a diverse set of experiments to
thoroughly evaluate hardware performance under various computational loads.

• Full Training Pipeline: This experiment evaluates the end-to-end performance,
from data ingestion and preprocessing through to the training phase, offering
a holistic view of application efficiency and hardware utilization.

• Non-IO (Input/Output) Tasks: By focusing on computational tasks without I/O
operations, this experiment provides insights into the raw processing power
and energy efficiency of the hardware, isolated from the potential bottlenecks
of data transfer.

• Inference: Conducted in the context of D3.7 exclusively for an application, the
inference experiment evaluates the hardware’s ability to execute pre-trained
models quickly and efficiently, a crucial aspect for real-time application de-
ployment.

For this deliverable, our analysis focuses on two key metrics: ’Time to Solution’,
which captures the total execution time of a given application, and ’GPU Energy
to Solution’, which focuses on quantifying the energy spent by GPUs. These met-
rics serve as the basis for calculating the ’Action Score’, a metric that attempts
to harmonise the trade-off between computation speed and energy consumption.
This balanced metric is fundamental to evaluating the performance of hardware
configurations. Moreover, we performed an analysis to scrutinize and depict the
energy-to-solution relative to host power consumption, in conjunction with GPU en-
ergy consumption.
Benchmarked devices have different Energy-to-Solution and Time-to-Solution. The
overall Energy-to-Solution depends additionally on the power consumption of the
Host system and the total run-time of the benchmark. We introduce a new type of
plot in which we explore Energy-to-Solution with different accelerators as a function
of host power consumption (without the accelerators). This allows for an analysis
of whether a tradeoff in favor of Energy-to-Solution against Time-to-Solution still
holds for slower, more efficient devices, when integrated in a full system.
For each number of devices that was benchmarked we plot the total Energy-to-
Solution for host power draws between 25 and 500 Watt. The best performers show
the lowest overall energy. Of special interest are intersection points which indicate
where a faster device starts outperforming a slower, more efficient device.
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By examining the behaviour of each hardware configuration across the entire train-
ing pipeline, Non-IO tasks and inference scenarios, we aim to identify a configura-
tion that not only excels in isolated benchmarks, but also offers the most convincing
performance all-round. The insights derived from this comprehensive analysis will
guide the formulation of an architectural design specifically tailored to W&C ap-
plications. This design is intended to inform the strategic deployment of computa-
tional resources, ensuring an optimised blend of performance and energy efficiency
that sets a new benchmark for weather and climate infrastructure.

2.2.3 Deviations and counter measures

We noted two minor deviations in our analysis. Initially, we employed a reduced
number of hardware configurations compared to those available. However, we still
documented a significant number of configurations, particularly those from the lat-
est generation. Secondly, the synthetic benchmarks for the final architecture were
not conducted directly by us; rather, they were provided by NVIDIA. Thee results
are documented in [2].
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3 Benchmark Applications

In the following analysis, we assess hardware performance across the variety of ap-
plications defined within MAELSTROM, utilizing specific experiments to discern the
configurations that deliver optimal efficiency and overall effectiveness. This section
aims to uncover insights into the best-performing hardware for the six MAELSTROM
applications AP1-AP6, setting the stage for informed decision-making in system ar-
chitecture for W&C applications. In order to have a clearer view of what will be
described in the next sections, the hardware configurations used for benchmarking
are summarised in Table 1. Please note also that the MI250 GPUs are built as Multi
Chip Modules (MCM) and because of that they are shown as 8 Graphic Compute
Dies (GCDs) with 64 GB memory each.
The reader is referred to D3.7 for more details.
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Table 1: Summary of Hardware Configurations
Configuration CPU Memory GPU Network
JRDC-A100 2x AMD

EPYC 7742,
2x 64 cores,
2.25 GHz

512 GB
DDR4, 3200
MHz

4x NVIDIA
A100 GPU,
4x 40 GB
HBM2e

2x
InfiniBand
HDR (100
Gbit/s)

JRDC-MI250 2x AMD
EPYC 7443,
2x 24 cores,
SMT-2

512 GiB
DDR4-3200
RAM

4x AMD
MI250 GPUs,
128 GB each
(MCM)

1x Mellanox
HDR
InfiniBand
ConnectX 6
(100 Gbit/s)

JRDC-H100 2x Intel
Xeon
Platinum
8452Y, 2x
36 cores,
SMT-2

512 GiB
DDR5-4800
RAM

4x NVIDIA
H100 PCIe
GPUs, 80 GB
each

1x
BlueField-2
ConnectX-6
DPU @ EDR
(100 Gbit/s)

JRDC-GC200-IPU 2x AMD
EPYC 7413,
2x 24 cores,
SMT-2

512 GiB
DDR4-3200
RAM

4x GC200
IPUs

1x Mellanox
EDR
InfiniBand
ConnectX 5
(100 Gbit/s),
1x Mellanox
100 GigE
ConnectX 5

E4-GH200 1x NVIDIA
Grace
72-Core

1x LPDDR5X
480GB RAM

1x NVIDIA
GH200 GPU

Mellanox
CX7 NDR
Dual Port
interconnec-
tion

E4-A2 2x NVIDIA
Xeon Gold
6426Y CPU

32x
DDR5-4800
32GB

2x NVIDIA
A2 Tensor
Core GPU

Mellanox
CX6 HDR
Single Port
interconnec-
tion
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3.1 AP 1

In analyzing AP1, we focus on two key areas: the Full Training Pipeline and Non-IO
experiments, providing insights into hardware performance across varied compu-
tational scenarios. Since the number of devices for the AMD MI250 represents the
number of GCDs, not the number of cards, we have divided this number by 2. This
way the same number of individual accelerators is compared.

3.1.1 Full Training Pipeline

The performance of various hardware configurations running the full application
pipeline of AP1 are reported in the following figures. Figures 1 and 2 show, respec-
tively, the power consumption of the various GPUs and the total runtime for each
configuration varying the number of devices involved. Figure 3 instead shows the
scores obtained by each hardware configuration.
The E4-A2 configuration, employed in a single GPU setup, exhibited the lengthiest
total execution time and action score among all configurations. In contrast, the
E4-GH200 configuration, utilizing a lone Grace Hopper GPU, emerged as the most
energy-efficient option. It combined a brief execution time (averaging 458.53s) with
minimal power consumption (32.16Wh), resulting in the lowest overall action score
among all configurations, totaling 53.092 MJs. Comparing configurations with four
GPUs, the JRDC-H100 configuration stood out by achieving a score comparable to
that of the Grace Hopper system, with an action score of 57.510 MJs. This highlights
the superior performance of the H100’s advanced architecture over the previous
model, the NVIDIA A100. Then, the JRDC-MI250 configuration showcased a higher
action score compared to the NVIDIA GPUs.

3.1.2 Non-IO Experiments

In this set of data from the non-I/O experiments designed to isolate accelerator per-
formance using synthetic data, we observe how different hardware configurations
perform under controlled conditions.
The E4-A2 configuration shows a considerable reduction in total runtime (see Fig. 5)
compared to its full application pipeline performance, indicating that while still not
the most efficient for training tasks, its performance improves significantly when
I/O is not a factor. However, the action score (reported in Fig. 6) remains relatively
high (92.108 MJs), suggesting that it’s not the optimal choice for intensive compu-
tational tasks.
The JRDC-H100 configuration demonstrates best performances, both in terms of
total runtimes (74.56 s) and action scores (3.27 MJs), highlighting its strong per-
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Figure 1: AP1 GPU Energy to Solution: GPU Energy to solution considering the dif-
ferent hardware configurations used. ap1-best-gpu-en

formance in computational tasks even when handling synthetic data. The GH200
showcases good performance, achieving a slightly higher action score (5.667 MJs)
compared to the configurations with four devices, while still remaining comparable.
This reinforces its position as a highly efficient option for this application.
Notably, the JRDC-GC200-IPU, with its distinct architecture, achieves the lowest en-
ergy consumption, that amounts to 7.44 Wh (see Fig 4), and the second best score
(3.55 MJs), underlining its potential for specialized tasks where its architecture can
be fully leveraged.
The JRDC-A100 and JWB-A100 configurations, both utilizing NVIDIA A100 GPUs,
maintain their stance as powerful options for deep learning and scientific com-
putations, though they exhibit a higher action score compared to the GC200-IPU
and H100 configurations.
The JRDC-MI250 configuration shows a remarkable ability to handle large effective
batch sizes, which could indicate its strength in parallel processing tasks.
Lastly, the JWB-V100 configuration, with its older technology compared to the A100
and H100 GPUs, demonstrates an higher action score with respect the other con-
figurations (except A2), showing improved efficiency and performance offered by
newer GPU models.
In summary, this non-I/O experiment data highlights the importance of matching
hardware capabilities with application-specific requirements, especially when fo-
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Figure 2: AP1 Time to Solution: Time to solution considering the different hardware
configurations used. ap1-best-runtime

cusing on accelerator performance. The GH200 and H100 configurations stand out
for their efficiency across tasks, while the GC200-IPU and MI250 offer unique advan-
tages for specialized or highly parallelizable workloads. These insights can guide
the selection of hardware configurations that best meet the performance and ef-
ficiency needs of Weather and Climate applications, balancing the computational
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Figure 3: AP1 Action Score: Action Score considering the different hardware config-
urations used to determine the most performing one. ap1-best-action

demands with energy consumption considerations.

3.1.3 Host Power analysis
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Figure 4: AP1 Non-IO Energy consumption: GPU Energy to solution for Non-IO ex-
periments considering the different hardware configurations used. ap1-
nonio-best-gpu-en

3.1.3.1 Full training

As seen in Fig. 7, for Application 1 we do not see any crossing lines within the
investigated host power range. The best performers are the GH200 for 1 GPU and
H100 for 4 GPUs.

3.1.3.2 Non-IO Experiments

As seen in Fig. 8, we see the Graphcore IPU perform best. However this changes
for a host power consumption above 300 Watt, where the H100 starts to perform
better with 4 GPUs.

3.1.4 Conclusions

When synthesizing insights from both the training pipeline and Non-IO experi-
ments, the E4-GH200 and JRDC-H100 consistently rank as top performers, show-
casing their versatility and efficiency across both full application pipelines and
accelerator-focused tasks. The JRDC-GC200-IPU stands out in the non-IO experi-
ments, emphasizing its potential for specific computational tasks where its archi-
tecture can be fully exploited.
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Figure 5: AP1 Non-IO Total runtime: Time to solution for Non-IO experiments
considering the different hardware configurations used. ap1-best-
nonio-runtime
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Figure 6: AP1 Non-IO Action Score: Action Score for Non-IO experiments consid-
ering the different hardware configurations used to determine the most
performing one. ap1-nonio-best-action
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Figure 7: AP1 Energy-vs-Host-Power (Training): Full node energy consumption as a
function of host power ap1-tr-etos
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Figure 8: AP1 Energy-vs-Host-Power (Non-IO): Full node energy consumption as a
function of host power ap1-nonio-etos
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3.2 AP 2

3.2.1 Full Training Pipeline

The data gathered within the scope of AP2 pertains solely to the training pipeline.
In figures 9, 10, and 11, we present the GPU energy consumption, total runtime,
and action score values, respectively.
The data reveals that increasing the number of GPUs does not significantly de-
crease runtime, suggesting that AP2 might not effectively utilize multiple GPUs for
enhanced parallel processing.
Among the evaluated configurations, the JRDC-H100 with a single GPU stands out
for its efficiency, achieving the lowest action score (9.77 MJs) and demonstrating
that sophisticated hardware like the H100 can meet the application’s demands
effectively on its own. The single-GPU JRDC-A100 configuration follows closely in
efficiency, further indicating that for AP2, a single GPU is sufficient for optimal
performance.
The E4-GH200 also delivers commendable performance in a single-GPU setup, em-
phasizing its potential for high efficiency in computational tasks. Like the H100 and
A100 configurations suggest, additional GPUs do not proportionally improve AP2’s
runtime, underscoring a scalability issue.
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Figure 9: AP2 GPU Energy to solution: GPU Energy to solution considering the dif-
ferent hardware configurations used. ap2-best-gpu-en
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Figure 10: AP2 Time to solution: Time to solution considering the different hard-
ware configurations used. ap2-best-runtime

3.2.2 Host Power analysis

As seen in Fig. 12, for Application 2 almost none of the lines cross. The A2 is beat
by all other devices except for an extremely low host power consumption of 25
Watt, wher we see the A2 outperform the second highest Energy-to-Solution. An
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Figure 11: AP2 Action Score: Action Score considering the different hardware con-
figurations used to determine the most performing one. ap2-best-
action

investigation on efficient systems integrating multiple A2s could be beneficial. The
best performers are the H100 for 1 and 2 GPUs and the A100 for 4 GPUs.
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Figure 12: AP2 Energy-vs-Host-Power: Full node energy consumption as a function
of host power ap2-tr-etos

3.2.3 Conclusions

The lack of scalability that emerges from the data indicates that AP2’s compu-
tational workload may not be optimally distributed across multiple GPUs. Conse-
quently, for this kind of application, investing in single-GPU configurations, such
as the JRDC-H100 or E4-GH200, may provide the most cost-effective and energy-
efficient solution.
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3.3 AP 3

In the context of AP3, the analysis performed will include not only the training
pipeline, but will also extend to Non-IO and inference experiments. In this way, we
aim to obtain a comprehensive understanding of the dynamics of performance in
the different phases of the AP3 workflow.

3.3.1 Full Training Pipeline

In the context of AP3’s full application pipeline, the JRDC-MI250 with 4 GPUs and
E4-A2 stand out as the top-performing configurations. The MI250 setup not only
achieves the lowest action score (see Fig. 15) among all tested configurations but
also demonstrates the benefits of scalability. Leveraging multiple GPUs significantly
enhances the computational speed (see Fig. 14), making it one of the best choice
for handling AP3s computational demands.
The E4-A2 configuration showcases high energy efficiency, with an average GPU
consumption of 29.56 Wh (see Fig. 13), and good performance, particularly when
considering its action score relative to its single GPU counterparts. The E4-A2 offers
a viable solution for scenarios with specific energy efficiency and computational re-
quirements. The E4-A2’s role is more accurately seen as an efficient single-GPU op-
tion, suitable for applications with less intensive computational demands or where
energy efficiency is a critical consideration.
In conclusion, the comprehensive analysis positions the JRDC-MI250 with 4 GPUs
and the E4-A2 single GPU configurations as the premier systems for AP3s full ap-
plication pipeline, with Action Scores of 178.85 MJs and 220.20 MJs, respectively.

3.3.2 Non-IO Experiments

We now shift our focus to analyzing the data collected for the Non-IO runs, which
include performance data for the GH200 and the IPU Graphcore. In Figure 16, en-
ergy consumption data is presented, while Figure 17 displays runtime data. Finally,
in Figure 18, the score of each configuration is depicted.
The E4-GH200 stands out as the most efficient option among single GPU con-
figurations, demonstrating its ability to deliver high computational performance
while minimizing energy consumption. Transitioning to multi-GPU configurations,
the JRDC-H100 with 4 GPUs emerges as the top performer in terms of action score.
This configuration proves to be the most efficient system overall for AP3’s Non-IO
tasks. Its dominance underscores the advanced design of the H100, optimized for
parallel processing, enabling it to achieve lower runtimes and energy consumption
compared to its counterparts. Additionally, the A100 configuration exhibits strong
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Figure 13: AP3 GPU Energy to solution: GPU Energy to solution considering the
different hardware configurations used during the Training phase. ap3-
tr-best-gpu-en
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Figure 14: AP3 Time to solution: Time to solution considering the different hard-
ware configurations during the Training phase. ap3-tr-best-runtime

performance in the 4-GPU case, boasting an action score slightly higher than that of
the H100 configuration. Moreover, the MI250 configuration reports an action score
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Figure 15: AP3 Action Score: Action Score considering the different hardware con-
figurations used to determine the most performing one during the Train-
ing phase. ap3-tr-best-action

comparable to that of the single GPU Grace Hopper.
In contrast, the performance of the Graphcore IPU presents an intriguing deviation.
Despite leading in Non-IO tasks for AP1, the IPUs demonstrate reduced efficiency
and optimization for AP3, resulting in higher consumption and longer runtimes.
In summary, this concise overview highlights the JRDC-H100 with 4 GPUs as the
optimal choice for Non-IO tasks in AP3, followed by the A100 and MI250 configura-
tions. The E4-GH200 emerges as the most efficient option for single GPU setups.

3.3.3 Inference

The inference performance data for AP3 provides valuable insights into how differ-
ent hardware configurations handle inference tasks. This analysis completes our
exploration of AP3 across the full pipeline, Non-IO, and inference tasks, offering a
comprehensive understanding of hardware performance across various computa-
tional scenarios.
From the plots reported in Fig. 19, 20 and 21, is notable how E4-A2 configuration
demonstrates a good efficiency in inference tasks, showing the lowest action score
of 0.078 MJs. This highlights the A2 GPU’s ability to handle inference tasks with min-
imal energy consumption while maintaining competitive runtimes. The JRDC-A100
and JRDC-H100 configurations show close competition in inference performance,
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Figure 16: AP3 Non-IO GPU Energy to solution: GPU Energy to solution for Non-
IO experiments considering the different hardware configurations used.
ap3-nonio-best-gpu-en
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Figure 17: AP3 Non-IO Time to solution: Time to solution for Non-IO experiments
considering the different hardware configurations used. ap3-nonio-
best-runtime
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Figure 18: AP3 Non-IO Action Score: Action Score for Non-IO experiments consid-
ering the different hardware configurations used to determine the most
performing one. ap3-nonio-best-action

with the H100 slightly leading in terms of a lower action score. However, both con-
figurations exhibit higher energy consumption compared to the E4-A2, impacting
their overall efficiency scores despite faster runtimes. Moreover, in a single GPU
setup, the JRDC-MI250 delivers impressive efficiency, with an action score signifi-
cantly lower than those of the A100 and H100 configurations. However, scaling up
to 4 GPUs does not result in proportional efficiency gains, suggesting that multi-
GPU configurations may not be optimal for inference tasks.

3.3.4 Host Power analysis

3.3.4.1 Full training

As seen in Fig. 22, for Application 3 we see an intersection for 1 GPUs where the
H100 starts beating the A2 at a host power consumption of 300 Watt. Due to differ-
ing numbers of devices tested, comparing the performance of the MI250 is difficult.

3.3.4.2 Non-IO Experiments

As seen in Fig. 23, we see no intersections in the given power range. The best
performer for 1 GPU is the GH200 and for 4 GPUs the H100.
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Figure 19: AP3 Inference GPU Energy to solution: GPU Energy to solution consid-
ering the different hardware configurations used during the Inference
phase. ap3-inf-best-gpu-en
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Figure 20: AP3 Inference Time to solution: Time to solution considering the dif-
ferent hardware configurations during the Inference phase. ap3-inf-
best-runtime
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Figure 21: AP3 Inference Action Score: Action Score considering the different hard-
ware configurations used to determine the most performing one during
the Inference phase. ap3-inf-best-action

3.3.5 Conclusions

In this concluding section, we consolidate insights gathered from the training pipeline,
Non-IO, and Inference experiments related to AP3.
Regarding the training pipeline, the top-performing systems are the 4-GPU JRDC-
MI250 and the single GPU E4-A2 configurations. However, the dynamics shift in the
Non-IO experiments, where multi-GPU systems featuring NVIDIA H100 and Grace
Hopper come into play. Here, the E4-GH200 emerges as the most promising option
in the single GPU configuration, while the JRDC-H100 configuration with 4 GPUs
achieves the best overall performance. Furthermore, concerning Graphcore, based
on the findings outlined here and in D3.7, we refrain from recommending the uti-
lization of graphic IPUs except for AP1. Nevertheless, the system exhibits promise,
and we recommend for further exploration into its potential.
In terms of inference, the E4-A2 stands out as the most efficient choice, striking a
balance between runtime and energy consumption.
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Figure 22: AP3 Energy-vs-Host-Power (Training): Full node energy consumption as
a function of host power ap3-tr-etos
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Figure 23: AP3 Energy-vs-Host-Power (Non-IO): Full node energy consumption as
a function of host power ap3-nonio-etos
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3.4 AP 4

For AP4, we’re examining training performance without any parallelization, with
each hardware configuration utilizing only one GPU, with the exception of the MI250
configuration, which uses only 1 GCD card (half of a GPU).

3.4.1 Full Training Pipeline

Upon examining the AP4 data, the E4-GH200 emerges as the most efficient among
single GPU setups. It demonstrates an average power consumption (see Fig. 24) of
around 122.34 Wh and boasts the shortest total runtime across all configurations
(see Fig. 25). These observations are supported by its Action score of 1867.47 MJs,
the lowest among all configurations (as reported in Fig. 26).
Meanwhile, the JRDC-A100 offer competitive alternatives, demonstrating its capac-
ity to handle training workloads with respectable efficiency. Also the JRDC-MI250
gets quite good performance, even if it use only one of the two GDCs card at its
disposal. While not leading the pack, the performance positions these two systems
as viable options depending on specific task requirements and constraints.
However, the JRDC-H100 exhibits the highest consumption and a longer total run-
time compared to the aforementioned configurations, suggesting it may not be as
competitive in this context. Conversely, the E4-A2 showcases energy consumption
comparable to the E4-GH200 and JRDC-A100 but with the longest runtime.
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Figure 24: AP4 GPU Energy to solution: GPU Energy to solution considering the
different hardware configurations used during the Training phase. ap4-
best-gpu-en
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Figure 25: AP4 Time to solution: Time to solution considering the different hard-
ware configurations during the Training phase. ap4-best-runtime
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Figure 26: AP4 Action Score: Action Score considering the different hardware con-
figurations used to determine the most performing one during the Train-
ing phase. ap4-best-action

3.4.2 Host Power analysis

As seen in Fig. 27, Application 4 did not use multi-GPU benchmarks. In case of the
MI250 this means that only half of the device is used, making it difficult to compare
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Figure 27: AP4 Energy-vs-Host-Power: Full node energy consumption as a function
of host power ap4-tr-etos

to the other devices. The overall best performer is the GH200.

3.4.3 Conclusions

The analysis of AP4’s training data underscores the E4-GH200 as the standout per-
former in efficiency among single GPU setups. With optimal balance in both speed
and energy utilization, the GH200 demonstrates its ability in training scenarios
where efficiency is critical.
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3.5 AP 5

In the scope of AP5, we provide data concerning the full training pipeline and non-IO
experiments. These will be elaborated upon in the following sections.

3.5.1 Full Training Pipeline

In evaluating the training pipeline data for AP5, as reported in Fig. 30, the E4-
GH200 configuration is the standout for efficiency, achieving the lowest action
score among the setups tested. On the other hand, JRDC configurations demon-
strate significant improvements in runtime (refer to Fig. 29) and action as the num-
ber of GPUs increases, demonstrating commendable system scalability. This trend
is particularly evident in the four-GPU configuration of JRDC-A100 and also the
4 GPUs JRDC-MI250, where both runtime and action score decrease significantly,
also reporting a slight reduction in power consumption with the addition of involved
GPUs (as reported in Fig. 28).
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Figure 28: AP5 GPU Energy to solution: GPU Energy to solution considering the
different hardware configurations used. ap5-best-gpu-en

3.5.2 Non-IO Experiments

We delve now into the efficiency and performance of the various hardware config-
urations used by AP5 for the Non-IO experiments. Plots related to the metrics are
reported in Fig. 31, 32 and 33.
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Figure 29: AP5 Time to solution: Time to solution considering the different hard-
ware configurations used. ap5-best-runtime

The depicted data highlights the JRDC-MI250 with 4 GPUs as achieving the low-
est action score among the configurations, marking it as the most efficient setup
tested. With a score of 549.26, this configuration demonstrates a significant ad-
vantage in handling Non-IO tasks efficiently, showcasing effective use of multiple
GPUs to optimize both runtime and energy consumption.
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Figure 30: AP5 Action Score: Action Score considering the different hardware con-
figurations used to determine the most performing one. ap5-best-
action

The JRDC-A100 configurations reveal an interesting trend; as the number of GPUs
increases, the action score improves, indicating better efficiency. The transition
from a single GPU to four GPUs sees a notable reduction in both in the total runtime
and in the energy consumption, which reflect on the action scores. This suggests

Maelstrom
2024

D 3.8 Report on solution design and architecture blueprint 40



that A100 GPUs benefit from parallel processing, enhancing their performance in
Non-IO tasks.
E4-GH200 also achieves performance, with an action score of 1054.97 MJs. Despite
being a single GPU setup, its efficiency is noteworthy, performing well in Non-IO
tasks with relatively low energy consumption and faster runtime compared to other
single GPU configurations.
E4-A2 and JRDC-MI250 in single GPU setups experience higher action scores, re-
flecting less efficiency in these particular tasks compared to their multi-GPU or
more optimized counterparts. Particularly, the E4-A2’s higher action score under-
scores its limited efficiency in this context, despite the potential for lower energy
consumption with respect to the A100 and MI250 single GPU configurations.
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Figure 31: AP5 Non-IO GPU Energy to solution: GPU Energy to solution for Non-
IO experiments considering the different hardware configurations used.
ap5-nonio-best-gpu-en

3.5.3 Host Power analysis

3.5.3.1 Full training

As seen in Fig. 34, we see some interesting results for Application 5. The overall
best performer with 1 GPU is by far the GH200, for 2 GPUs it’s the H100 and for
4 GPUs the A100. It is of note that this benchmark had suffered from temporary
performance regressions on the H100 node. Another interesting point is that for 1
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Figure 32: AP5 Non-IO Time to solution: Time to solution for Non-IO experiments
considering the different hardware configurations used. ap5-best-
nonio-runtime

GPU the MI250 starts outperforming the A100 and H100 at around 200 Watt host
power and for 2 GPUs outperforms the A100 at 150 Watt host power.
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Figure 33: AP5 Non-IO Action Score: Action Score for Non-IO experiments consid-
ering the different hardware configurations used to determine the most
performing one. ap5-nonio-best-action

3.5.3.2 Non-IO Experiments

As seen in Fig. 35, The best performer for 1 GPU is the GH200. We see the MI250
outperform the A100 above 350 Watt host power for 1 GPU and get very close to it
at 500 Watt for 2 GPU. for 4 GPUs the A100 always outperforms the MI250.
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Figure 34: AP5 Energy-vs-Host-Power (Training): Full node energy consumption as
a function of host power ap5-tr-etos

3.5.4 Conclusions

In this section, we summarize the findings from AP5 concerning both the training
pipeline and Non-IO experiments.
In the training pipeline analysis, the top-performing system is the E4-GH200, fol-
lowed by JRDC-A100 (4 GPUs) and MI250 (4 GPUs). However, the dynamics change
slightly in the Non-IO experiments: the most performant system is represented by
the 8-GCDs MI250 configuration, followed by the 4-GPU JRDC-A100 and the E4-
GH200.
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Figure 35: AP5 Energy-vs-Host-Power (Non-IO): Full node energy consumption as
a function of host power ap5-nonio-etos
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3.6 AP 6

Our analysis of applications concludes with AP6, which focuses on the training
pipeline. This application explores configurations that not only vary in the num-
ber of GPUs but also in the number of nodes involved.

3.6.1 Full Training Pipeline

The E4-A2 configurations show a clear trend of increased efficiency with more
GPUs. Starting from a single GPU to four GPUs (two GPUs for each node), there’s a
noticeable decrease in both total runtime and action score (see Fig. 36, 37 and 38),
indicating that E4-A2 scales well for this particular training task. The action score
improves significantly as the number of GPUs increases, highlighting effective par-
allel processing capabilities. The E4-GH200 configurations also show improvements
with the introduction of multi-node parallelization, achieving a score second only to
that of the E4-A2 configuration. Also, the JRDC-A100 configuration shows a moder-
ate performance improvement with two and three GPUs, as evidenced by the action
scores, passing from 5491.58 to 2509.34 MJs. Then, JRDC-MI250 and JRDC-H100 ex-
hibits increased action scores with more GPUs, showing that adding GPUs leads to
higher energy consumption without proportional gains in runtime efficiency, es-
pecially notable in the JRDC-H100’s two and four GPU setup showing a significant
jump in action score.

3.6.2 Conclusions

3.6.3 Host Power analysis

Several caveats apply to the results seen in Fig. 39 for Application 6. On JSC ma-
chines (JRDC-A100, JRDC-H100 and JRDC-MI250) an issue with the launch script
configuration prevented the application from utilizing multiple devices, leading to
negative scaling with the number of devices. The configuration was fixed as of this
deliverable, but reruns of the benchmarks could only be performed for the A100
device, the results for the H100 and MI250 are still affected. Furthermore, the per-
node parallelism was limited to 3 devices due to the high memory consumption of
the application.
We see that for 1 GPU the best 3 performers reverse order at a host power of 225
Watt. For lower host powers the A2 comes in first place, followed by the GH200 and
A100. For higher power the A100 performs best, followed by the GH200 and A2.
For 2 GPUs the best performers are the GH200 and A2, with the GH200 overtaking
the A2 at a host power of 375 Watt.
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Figure 36: AP6 GPU Energy to solution: GPU Energy to solution considering the
different hardware configurations used during the Training phase. ap6-
best-gpu-en
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Figure 37: AP6 Time to solution: Time to solution considering the different hard-
ware configurations during the Training phase. ap6-best-runtime
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Figure 38: AP6 Action Score: Action Score considering the different hardware con-
figurations used to determine the most performing one during the Train-
ing phase. ap6-best-action

3.6.4 Conclusions

The analysis of AP6’s training pipeline reveals that the E4-A2 configurations are par-
ticularly efficient, with noticeable improvements in performance and energy use as
more GPUs and nodes are added. Also E4-GH200 and JRDC-A100 also performed
well, while JRDC-H100, and JRDC-MI250 configurations demonstrate varying de-
grees of efficiency, with generally higher action scores that indicate less optimal
energy consumption relative to performance gains.
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Figure 39: AP6 Energy-vs-Host-Power: Full node energy consumption as a function
of host power ap6-tr-etos
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3.7 Comparative Analysis

In this comparative analysis of hardware configurations, we examine the perfor-
mance of various hardware setups across all six distinct applications outlined within
the MAELSTROM project. Our objective is to identify configurations that demon-
strate optimal performance across the board. To facilitate a comprehensive com-
parison, we’ve compiled a table summarizing the top-performing hardware con-
figurations identified across these applications. Each application presents unique
computational challenges, emphasizing the importance of this comparison in high-
lighting the versatility and adaptability of different hardware solutions. Table 2 dis-
plays the top three best-performing hardware setups overall, aiding in the selection
of configurations that best align with the requirements and constraints across all
applications.

Table 2: Comparative Analysis of Hardware Configurations Across Applications.

The number of GPUs in the configuration is shown between brackets

Application Top Performer Second Best Third Best

AP1 E4-GH200 (1) JRDC-H100 (4) -

AP1-NonIO JRDC-H100 (4) JRDC-GC200-IPU (4) JRDC-A100 (4) / E4-GH200 (1)

AP2 JRDC-H100 (1) JRDC-A100 (1) E4-GH200 (1)

AP3 JRDC-MI250 (4) E4-A2 (1) JRDC-H100 (1)

AP3-NonIO JRDC-H100 (4) JRDC-A100 (4) JRDC-MI250 (4) / E4-GH200 (1)

AP3-Inf E4-A2 (1 GPU) JRDC-MI250 (1) -

AP4 E4-GH200 (1) JRDC-MI250 (1) JRDC-A100 (1)

AP5 E4-GH200 (1) JRDC-A100 (4) JRDC-MI250 (4)

AP5-NonIO JRDC-MI250 (4) JRDC-A100 (4) E4-GH200 (1)

AP6 E4-A2 (All) JRDC-A100 (3) E4-GH200 (2)

The table identifies hardware configurations that consistently deliver top-tier per-
formance across the applications. Our analysis, grounded in comparative perfor-
mance data, has led us to identify two hardware configurations that stand out
for their respective strengths in training and inference tasks: the GH200 and the
NVIDIA A2. The GH200 configuration has demonstrated superior performance in
training phases across various applications, competing effectively with multi-GPU
configurations despite being a single-device setup. Its robust computational ca-
pabilities make it ideally suited for handling the complex, data-intensive models
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typical in weather and climate simulations. The GH200’s efficiency and scalability
ensure that as models grow in complexity and size, the infrastructure can adapt,
providing faster iterations and enabling more comprehensive simulations. For the
inference phase, the NVIDIA A2 GPU emerges as the most effective option. It of-
fers the necessary speed and energy efficiency for running trained models, making
it particularly well-suited for deploying W&C models in operational settings where
rapid data processing is paramount.
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4 Best-Performing Hardware Configuration

Achieving excellence in W&C applications requires an infrastructure that not only
meets current computational demands but is also scalable and energy-efficient to
support future advancements. Our analysis, based on comparative performance
data, has led us to highlight the GH200 hardware configuration for its strengths in
training across all the six proposed applications. We delve into the specifics of this
high-performance architecture to showcase its ability to effectively manage W&C
AI workloads, both in training and inference.

4.1 NVIDIA GH200

The NVIDIA GH200 Grace Hopper architecture [1] [2], reported in Fig. 40 and 41,
combines the power of the NVIDIA Hopper GPU with the versatility of the NVIDIA
Grace CPU. This fusion is made possible by a high-bandwidth and memory-coherent
NVIDIA NVLink Chip-2-Chip (C2C) interconnect within a single Superchip, alongside
support for the new NVIDIA NVLink Switch System.

Figure 40: NVIDIA GH200: Grace Hopper Superchip gh200

The Grace CPU integrates 72 Neoverse V2 Armv9 cores with up to 480GB of server-
class LPDDR5X memory with ECC. In contrast to an eight-channel DDR5 design, the
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Figure 41: NVIDIA GH200: Grace Hopper logical overview. gh200-log

Grace CPU LPDDR5X memory subsystem offers up to 53 percent more bandwidth
at one-eighth the power per gigabyte per second.
The H100 Tensor Core GPU is the latest data center GPU by NVIDIA, Powered by
the innovative Hopper GPU architecture, the H100 introduces several key advance-
ments. Firstly, it features fourth-generation Tensor Cores, which excel at accelerat-
ing matrix computations across a wide range of AI and HPC tasks. Additionally, the
integration of a new Transformer Engine enables the H100 to achieve speedups
in AI training, up to 9 times faster than the previous generation, and up to 30
times faster AI inference. Furthermore, the H100 introduces Secure Multi-Instance
GPU (MIG) technology, allowing the GPU to be partitioned into isolated instances
tailored to different workloads.
GH200 Superchip incorporates HBM3 memory, utilizing 96GB and delivering 4TB/s
of memory bandwidth. The HBM is seamlessly integrated with CPU memory via
NVLink-C2C, providing up to 624GB of fast-access memory to the GPU.
NVLink-C2C serves as NVIDIAs memory-coherent, high-bandwidth, and low-latency
interconnect for superchips, serving as the backbone of the GH200. It delivers up to
900GB/s total bandwidth. This memory coherency allows concurrent and transpar-
ent access to both CPU and GPU resident memory, freeing developers from explicit
memory management and enabling them to focus on algorithms. NVLink-C2C also
enables applications to oversubscribe GPU memory and utilize NVIDIA Grace CPU
memory at high bandwidth. With up to 480GB of LPDDR5X CPU memory per Grace
Hopper Superchip, the GPU gains direct high-bandwidth access to an additional
480GB of memory.
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5 Conclusion

The culmination of our efforts in previous benchmarking analyses is encapsulated
within this deliverable, aimed at delineating a solution design tailored for W&C
applications. Throughout the project’s duration, we have observed substantial ad-
vancements in both hardware technology and the applications themselves, indica-
tive of a visible evolution in our approach.
Within this deliverable, we revisited and analyzed the hardware configurations em-
ployed in the last benchmarking phase. Our objective was to scrutinize their capa-
bilities and optimizations in executing machine learning benchmarks pertinent to
the W&C domain.
Our process commenced with an examination of the top-performing hardware con-
figurations for each application, with the goal of pinpointing the most effective and
efficient solutions to meet our computational requirements. Subsequently, a com-
parative analysis was undertaken to identify hardware configurations that not only
excel in individual applications but also strike a balance across all evaluated soft-
ware specifically tailored for W&C needs.
During our examinations of distributed File Systems (FS) over the network (e.g.
Ethernet, Infiniband), detailed in D3.6, we noticed a significant performance boost
when repeatedly accessing the same dataset, particularly when the server cache
was activated. This enhancement results from the dataset being fully cached in the
server’s memory after the initial read.
Moreover, the utilization of high-performance local storage (NVMe) for dataset
reads proved to be even more impactful in enhancing performance compared to
distributed FS.
Following our extensive analysis, we have selected the GH200 hardware configura-
tion for its outstanding training performance across all six proposed applications.
This conclusion is elaborated upon in the final chapter of this document. While the
defined architecture offers limited customization options, the inclusion of an NVMe
space tailored to accommodate datasets could be a valuable consideration.
The NVIDIA GH200 Grace Hopper superchip represents a pioneering advancement,
marking the beginning of true heterogeneous accelerated platforms for high per-
formance computing and AI workloads. Its integration of GPU and CPU strengths,
coupled with a simplified and efficient heterogeneous programming model,posi-
tions it as as an innovative solution in the field.
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