

MAchinE Learning for Scalable meTeoROlogy

and climate

Report on software performance

benchmarking for ML solutions

from deliverable D1.4

Saleh Ashkboos

www.maelstrom-eurohpc.eu

http://www.maelstrom-eurohpc.eu/

D2.6 Report on software performance

benchmarking for ML solutions from

deliverable D1.4

Author(s): Saleh Ashkboos (ETH)

Dissemination Level: Public

Date: 25/03/2024

Version: 1.0

Contractual Delivery Date: 31/03/2024

Work Package/ Task: WP2/ T2.2 T2.3 T2.4 T2.5 T2.6

Document Owner: ETH

Contributors: ECMWF, 4Cast

Status: Final

MAELSTROM

Machine Learning for Scalable Meteorology and

Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:

ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 955513. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme and United Kingdom,
Germany, Italy, Luxembourg, Switzerland, Norway

mailto:Peter.Dueben@ecmwf.int

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 4

Contents

1 EXECUTIVE SUMMARY ... 5

2 INTRODUCTION .. 6

2.1 ABOUT MAELSTROM .. 6

2.2 SCOPE OF THIS DELIVERABLE .. 6
2.2.1 OBJECTIVES OF THIS DELIVERABLE ... 6
2.2.2 WORK PERFORMED IN THIS DELIVERABLE .. 7
2.2.3 DEVIATIONS AND COUNTER MEASURES .. 7

3 BENCHMARKING INFRASTRUCTURE BY WORK PACKAGE TASKS ... 7

3.1 NEW APPLICATION AP7: DATA ASSIMILATION FOR NUMERICAL WEATHER PREDICTIONS VIA MACHINE

LEARNING ... 7

3.2 BENCHMARKING TOOLS, DEPLOYMENT, AND INFRASTRUCTURE (TASKS 2.3 AND 2.6) 9
3.2.1 TIMING FOR MACHINE LEARNING APPLICATIONS ... 9
3.2.2 TIMER EXAMPLE USAGE .. 10
3.2.3 TIMER LOGGING .. 10
3.2.4 TIMING GPU CODES IN PYTORCH AND TENSORFLOW ... 10
3.2.5 TENSORFLOW/KERAS SUPPORT .. 11

4 SOFTWARE BENCHMARKING RESULTS .. 11

4.1 APPLICATION 1: BLEND CITIZEN OBSERVATIONS AND NUMERICAL WEATHER FORECASTS 12

4.2 APPLICATION 2: INCORPORATE SOCIAL MEDIA DATA INTO THE PREDICTION FRAMEWORK 12

4.3 APPLICATION 3: NEURAL NETWORK EMULATORS TO SPEED UP WEATHER FORECAST MODELS AND DATA

ASSIMILATION ... 13

4.4 APPLICATION 4: IMPROVE ENSEMBLE PREDICTIONS IN FORECAST POST-PROCESSING............................ 13

4.5 APPLICATION 5: IMPROVE LOCAL WEATHER PREDICTIONS IN FORECAST POST-PROCESSING 14

4.6 APPLICATION 6: PROVIDE BESPOKE WEATHER FORECASTS TO SUPPORT ENERGY PRODUCTION IN EUROPE

 15

4.7 APPLICATION 7: DATA ASSIMILATION.. 16

5 CONCLUSION ... 19

6 REFERENCES .. 19

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 5

1 Executive Summary

This delivery is a report on software performance benchmarking for machine learning solutions.

● Software benchmarking tools are on track and benchmarks have been completed.

● A comprehensive timing infrastructure for benchmarking deep learning applications has

been developed.

● The machine learning solutions from Deliverable 1.4 have been benchmarked and the results

are documented in this report.

● A new application (AP7) is presented (from ETH) which is exploring the use of machine

learning for data assimilation in numerical weather prediction. The application is

implemented in JAX and benchmarked using our infrastructure.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 6

2 Introduction

2.1 About MAELSTROM

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke

compute system designs for optimal application performance and energy efficiency, a software

framework to optimise usability and training efficiency for machine learning at scale, and large-scale

machine learning applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of

computing systems regarding energy consumption, time-to-solution, numerical precision and

solution accuracy. Customized compute systems will be designed that are optimized for application

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware

developments, driven by general machine learning applications, toward needs of weather and

climate applications.

The MAELSTROM software framework will enable scientists to apply and compare machine learning

tools and libraries efficiently across a wide range of computer systems. A user interface will link

application developers with compute system designers, and automated benchmarking and error

detection of machine learning solutions will be performed during the development phase. Tools will

be published as open source.

The MAELSTROM machine learning applications will cover all important components of the

workflow of weather and climate predictions including the processing of observations, the

assimilation of observations to generate initial and reference conditions, model simulations, as well

as post-processing of model data and the development of forecast products. For each application,

benchmark datasets with up to 10 terabytes of data will be published online for training and

machine learning tool-developments at the scale of the fastest supercomputers in the world.

MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning

applications on supercomputers in the future.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

The objective of Deliverable 2.6 is to employ and enhance the benchmarking framework established

within Work Package 2 for assessing the software performance of machine learning applications

within the MAELSTROM project. The benchmarking process should be easy to incorporate with

minimal interference in application performance, yet offer comprehensive insights for users to

recognize bottlenecks or performance declines resulting from modifications. This framework is

intended to empower MAELSTROM applications to offer actionable insights through routine

performance evaluations.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 7

2.2.2 Work performed in this deliverable

In the following, we present the tasks completed in this deliverable:

● An easy-to-use interface for timing (and benchmarking) the applications using Deep500 was

developed.

● The software benchmarking of MAELSTROM applications using the introduced interface was

performed.

● The software benchmarking results of Application 6 were included for the first time in this

deliverable.

● A new application for data assimilation was introduced and benchmarked using our software

benchmarking tools.

2.2.3 Deviations and counter measures

Software benchmark did not turn out to be as important for the MAELSTROM project as anticipated

during the proposal-writing phase. This is mainly the case as the number of competitive software

packages for machine learning in high performance computing has reduced significantly over the last

years. Instead of a large zoo of libraries, the main environments that are used today are Pytorch,

TensorFlow and JAX. After extensive consultations with the application teams, particularly during the

last MAELSTROM General Assembly, it was determined to revise the primary objective of the current

deliverable. While an additional round of benchmarking with the Deep500 framework was

conducted for all applications in PyTorch and Tensorflow, a new application from ETH was developed

by ETH, referred to as AP7 in this deliverable. For Deep500, we have devised a lightweight timing

infrastructure that can seamlessly integrate into existing applications with minimal adjustments

along with the development of an accessible API. Regardless of the approach, detailed software

benchmarking results will continue to be generated.

3 Benchmarking Infrastructure by Work Package Tasks

We detail recent progress in the MAELSTROM workflow and software benchmarking packages. In

the first part, we present a brief introduction to the new application for data assimilation. Then, we

present the general idea of our benchmarking tools in this deliverable.

3.1 New Application AP7: Data assimilation for numerical weather predictions via

machine learning

Modern weather forecasts heavily rely on numerical weather predictions. These predictions depend

on data assimilation, which uses sparse observations to create initial conditions on a model grid.

Errors in these initial conditions are a major reason for errors in forecasts. Data assimilation is also

used to generate reanalysis datasets like ERA5, which recreate past weather in grid form. These

datasets are crucial for weather and climate research and for training global weather forecast

models that use machine learning.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 8

Different techniques for data assimilation have been developed to handle various aspects of

observation data and system dynamics. Among these, variational data assimilation and ensemble

Kalman filter are the two most commonly used methods in operational data assimilation. Both

approaches require considerable computational resources: the variational method demands

multiple optimization iterations and the Kalman filter method performs numerous ensemble

simulations. While a number of recent papers have shown the successful use of sophisticated

machine learning models to build entire weather forecast models that are competitive with state-of-

the-art conventional models (e.g. Graphcast, Fourcastnet, PanguWeather and Gencast), we present

one of the first approaches to use machine learning models for data assimilation.

Figure 1: Diagram of numerical weather forecast pipeline. It consists of data assimilation, forecast and post-
processing. Data assimilation produces gridded values from sparse observations and predicted gridded values
from previous time steps. Forecast takes in gridded values and produces predictions in gridded values at future

time steps. Post-processing improves forecast results such that it is closer to future observations..

From a probabilistic standpoint, data assimilation can be understood as sampling from a probability

distribution of atmospheric states, taking into account observations and predicted states. Given its

capacity to tackle conditional sampling, denoising diffusion models emerge as a promising option for

data assimilation. Furthermore, the expanding realm of diffusion models offers a range of

techniques for imposing various conditions. Particularly noteworthy are conditioning techniques for

tasks like in-painting and super-resolution, which bear similarities to conditioning based on

observations and predicted states, respectively.

While this approach using denoising diffusion models has been applied in smaller-scale data

assimilation problems, none have been able to assimilate data at resolutions comparable to the

ERA5 dataset (0.25 degree horizontal resolution), limiting their utility with machine learning forecast

models. Similarly, denoising diffusion techniques have found application in weather forecasts and

post-processing. For instance, GenCast capables of performing ensemble forecasts at a 1-degree

resolution.

In this application, we introduce DiffDA [4], a novel approach to data assimilation centered around

the denoising diffusion model, specifically tailored for weather and climate applications. Our method

is capable of assimilating data with a resolution of 0.25 degrees with 13 vertical levels, leveraging the

GraphCast ML weather forecast model as the backbone of the diffusion model. The work has already

resulted in a scientific paper [4].

During the training phase, the diffusion model is conditioned by predicted states generated by the

forecast model from earlier initial conditions. In the inference stage, we further condition the model

with sparse column observations following the Repaint technique. Additionally, we employ a soft

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 9

mask and interpolated observations to reinforce conditioning, leveraging the continuity of

atmospheric variables.

Through this approach, the assimilated data can gradually converge towards the ground truth data

as the number of samples increases.

3.2 Benchmarking Tools, Deployment, and Infrastructure (Tasks 2.3 and 2.6)

Deep500 [1] is a modular benchmarking tool that is developed to test high-tech deep learning

programs. In this deliverable, we provide a simple and easy-to-use interface for Deep500 for dealing

with weather and climate applications. We repeat the benchmarking of the applications in the

MAELSTROM Deliverable 2.3 with the advanced versions of the MAELSTROM applications in this

deliverable.

Our main focus is on making sure we can accurately measure and note important parts of a

program's performance, like how long it takes to read and write data, and the time it takes for the

program to learn from its mistakes. We also made sure Deep500 could handle any kind of program,

no matter how it was built. Furthermore, we made sure it could easily connect with other programs

used for keeping track of performance.

3.2.1 Timing for Machine Learning Applications

We added a new feature to Deep500 called the Timer. It lets developers mark the start and end of

a section they want to measure. Then, it calculates how much time passed between the start and

end. This feature gives developers the freedom to measure time in detail or in broad strokes. Each

section is labeled with a key to describe what it's measuring, to make it easier to work with multiple

timers within a single programme. Sections with different labels can overlap or be nested inside each

other, which helps to break down the timing into details even more.

A timer is created as follows:

tmr = timer.Timer()

Then, the object can measure the time for every block of code. We define the following keys

for the timer object:

● timer.TimeType.EPOCH - one complete pass over a dataset

● timer.TimeType.BATCH - one mini-batch

● timer.TimeType.FORWARD - forward propagation for one mini-batch

● timer.TimeType.BACKWARD - backward propagation for one mini-batch

● timer.TimeType.COMM - communication during one mini-batch

● timer.TimeType.IO - I/O to load data for one mini-batch

● timer.TimeType.OTHER - a catch-all for a user-defined region

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 10

Finally, the timer can be extended for measuring other parts of the code.

3.2.2 Timer Example Usage

Figure 2 shows the usage of our timer to measure the time of a single epoch in PyTorch.

Figure 2: Example of measuring epoch runtime using Deep500 timer.

3.2.3 Timer Logging

Different deep-learning workloads use different logging frameworks. To this end, we provide several

ways of logging the recorded times using our timers. We support both MLFlow and WandB in our

timer. Currently, there are several ways to retrieve or save timing results.

● tmr.get_time(key) will return a list of all times recorded for key.

● tmr.get_time_stats(key) will return an object with various summary statistics for

all times recorded for key.

● tmr.print_all_time_stats() will print (to stdout) summary statistics for all

times recorded for all keys.

● tmr.save_all_time_stats(filename) is similar, but will write the output to the

file named by filename.

● tmr.log_wb_all(prefix='') will log the mean time of all keys recorded to Weights

& Biases (optionally prepending prefix to the logging keys).

● tmr.log_mlflow_all(prefix='') is similar, but will log to MLFlow instead.

3.2.4 Timing GPU codes in PyTorch and TensorFlow

Code running on the GPU typically executes asynchronously (i.e., the CPU launches a series of

kernels, but does not wait for their computations to complete, only checking later). This means that

timing solely on the CPU may not adequately reflect the actual computation time for certain regions.

When using PyTorch or TensorFlow, we also support adding timers for GPU kernels. For PyTorch, this

is low-overhead; due to technical issues, there can be additional overheads with TensorFlow.

To solve this issue, we made the Timer class flexible and adaptable. By default, it uses standard high-

quality timers found in computer processors. Additionally, we created a special timer for regions

using GPUs called CUDA events. These events are a part of the CUDA system, used for measuring

time on graphics cards. They only communicate with the main processor when needed, so they don't

slow down the program much.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 11

However, in the current setup, timing on GPUs might be slower when using frameworks other than

PyTorch, like TensorFlow. This is because those frameworks don't show the inner workings of CUDA

streams, making timings harder. We're working on updating our tools to fix this issue.

3.2.5 TensorFlow/Keras Support

Deep500 has a simple way to measure time on the CPU, which can be used in Deep500 recipes. Also,

it can time specific parts of a program using its events feature. Our Timer feature does more—it can

also time things on the GPU and keep track of what's happening. However, most programs in D1.4

aren't made to work with Deep500 for their benchmarking. However, users can add timing to their

programs without changing anything or needing extra software.

To fix this, we extend our timing API to be compatible with TensorFlow/Keras. In such frameworks,

the user usually involves a training loop using model.fit()and does not explicitly define training

loops. We provide a callback that supports epoch- and batch-level timing during training.

The figure 3 shows an example of using our API for measuring the time for a TensorFlow program.

Figure 3: Example of using our timing API in TensorFlow.

4 Software Benchmarking Results

Working alongside the application teams of Work Package 1, we employed the Deep500 timing

infrastructure to carry out the initial software benchmarking of the machine learning solutions

detailed in Deliverable 1.4. With the support of Work Package 2, each application seamlessly

integrated the timers and executed benchmarks to yield these findings. Subsequently, in Deliverable

1.4, we presented a comprehensive software benchmarking analysis for all applications leveraging

Deep500. Here, we present another round of software benchmarking using the API we developed on

top of Deep500 (the code is available at this repo: https://github.com/sashkboos/Deep500-for-

MAELSTROM).

We unify all the benchmarking across all the applications and report the time for each epoch for

both forward and backward pass as well as IO. Additionally, we include the benchmarking results of

the new application (AP7 from ETH) about data assimilation. Below we report the results for each

application, along with brief details of their benchmarking setup.

https://github.com/sashkboos/Deep500-for-MAELSTROM
https://github.com/sashkboos/Deep500-for-MAELSTROM

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 12

4.1 Application 1: Blend Citizen Observations and Numerical Weather Forecasts

Application 1 aims to produce high-resolution (1x1 km) hourly temperature forecasts for the Nordic

countries, 58 hours into the future.

The benchmark consists of training a U-Net on a subset of the A1 dataset. We used the same model

configuration as in D3-7. We chose a small subset (9 out of 362 available training files) of the dataset

and ran it for 10 epochs. The 124GB training data was not cached in memory (even though it fits) in

order to simulate the expected performance when running on the full dataset.

We ran the benchmark on a single 40GB A100 GPU on the JURECA system. We used NVIDIA’s

tensorflow container, which includes Python3.8, TensorFlow 2.12, and CUDA 12.1. As in other

deliverables, the data processing for this application was done on the CPU, and the training on the

GPU.

The variability of the processing times are relatively low, as the minimum times are close to the

median times. The exception is the first batch, which is significantly slower than the others. This is

due to the fact that it includes the data loading time for the first file and framework initialization

overhead. This is similar to the results we got in D2.3.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch (CPU) 113.47643 121.92249 120.18363 142.09439 8.50714

Batch (CPU) 0.07399 0.11428 0.08892 15.80655 0.19250

Batch (GPU) 0.07400 0.11430 0.08895 15.80662 0.19251
Table 1: Benchmarking results for Application 1.

4.2 Application 2: Incorporate Social Media Data into the Prediction Framework

Application 2 aims to use data provided by social media and weather sensors. Here, we use the text

of Tweets to predict the occurrence of rain at the Tweet’s location and time of creation.

We initialise the small variant of the DeBERTa model [3] with pre-trained weights from the Hugging

Face repository1. We finetune the model during one epoch on our large dataset (~1.6 Mio. Tweets).

We used the transformer package (Version 4.38.2) with the PyTorch backend (Version 2.2.1) to train

our model on a NVIDIA Tesla A100 from the Jülich Supercomputing Centre (JSC) using CUDA 11.7.

Batch, forward, and backward time was measured using GPU-side timing.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch 180.14980 180.14980 180.14980 180.14980 0.00000

Batch 0.11619 0.13142 0.12229 8.32839 0.24195

Forward 0.05676 0.06631 0.05759 7.70765 0.22562

Backward 0.04796 0.04861 0.04843 0.18809 0.00414
Table 2: Benchmarking results for Application 2.

1 https://huggingface.co/microsoft/deberta-v3-small/tree/main

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 13

4.3 Application 3: Neural Network Emulators to Speed Up Weather Forecast Models

and Data Assimilation

Application 3 seeks to emulate the radiative transfer process for both short and long wavelengths, a

columnar problem found within all weather and climate models.

For this software benchmarking exercise, we have used Tensorflow Version 2.11 with CUDA 11.7,

using one A100 GPU from Jülich JURECA DC module. The model used is a predominantly RNN

architecture, specifically using LSTM blocks to propagate information in the vertical dimension.

Details of the architecture can be found in D1.3 and D1.4.

Training has been carried out following the same methodology already introduced in previous

software and hardware benchmarking exercises. In this case, we use 5 epochs, and limit the number

of batches per epoch to 1000.

Epoch time was measured using GPU-side and CPU-side timing, while batch time was measured

using CPU-side timing.

Similarly to the previous deliverable, for the batch time the maximum time is larger than the mean

and median time, but the low standard deviation indicates that this should be treated as an outlier

due to the initialization overheads that occur in the first batch. That overhead can also be seen in the

case of the epoch time, where the maximum recorded is probably associated with the first epoch.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch (CPU) 86.65345 104.82769 88.62053 170.86387 36.95771

Batch (CPU) 0.02116 0.07561 0.07220 13.67991 0.19281

Batch (GPU) 0.02117 0.07562 0.0722 13.67990 0.19281
Table 3: Benchmarking results for Application 3.

4.4 Application 4: Improve Ensemble Predictions in Forecast Post-Processing

Application 4 aims to apply deep neural models to post-process the ensemble outputs of ensemble

numerical weather prediction systems to improve the quality and skill of forecasts. We use ENS-10

[2] dataset with a U-Net style model and trained for 3 epochs with different batch sizes and the

Adam optimizer, following the prior methodology. We used NetCDF format for saving the dataet.

Training was performed using PyTorch 1.13.1 and TensorFlow 2.11.0 on a single 40 GB A100 GPU

from local ETH computing resources using CUDA 11.6.2. Batch, forward, and backward time was

measured using GPU-side timing.

After benchmarking the experiments with PyTorch and TensorFlow, we found that our results are

quite similar to the last deliverable. This is expected as the application is unchanged and the

infrastructure is also the same. Tables 4-1 and 4-2 summarise our results on both PyTorch and

TensorFlow frameworks.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 14

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch 180.12 188.1 183.3 199.7 10.3

Batch 0.053 0.15 0.14 5.99 0.57

Forward 0.006 0.007 0.006 5.1 0.054

Backward 0.015 0.016 0.015 0.43 0.007

IO 0.03 0.11 0.11 5.8 0.19
Table 4: Benchmarking results for Application 4 in PyTorch.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch 195.1 252.1 263.1 288.2 36.18

Batch 0.05 0.15 0.09 33.1 1.3

IO 3e-4 0.04 2e-3 2.7 0.62
Table 5: Benchmarking results for Application 4 TensorFlow.

Comparing two tables, we can see that TFRecords (in TensorFlow) reduces the IO by order of
magnitude. However, the total time for each epoch is not that much different from PyTorch
implementation due to other framework related overheads.

4.5 Application 5: Improve Local Weather Predictions in Forecast Post-Processing

Application 5 explores the usage of deep neural networks for statistical downscaling of

meteorological fields. The Tier-2 dataset, which is tested here, is designed for downscaling the 2m

temperature from ERA5 reanalysis data with 𝛥𝑥𝐸𝑅𝐴5 ≃ 30 km to the spatial resolution of the

COSMO REA6 dataset (𝛥𝑥𝐶𝑅𝐸𝐴6 ≃ 6 km).

The same WGAN configuration and dataset as used in D3-7 has been used. Compared to D2-3, this

results in an increased number of trainable parameters (about 9M instead of 5M) and a larger

number of predictor variables (15 instead of 10). For this benchmark, the downscaling model has

been trained for 5 epochs on a single A100 GPU on JURECA DC using Tensorflow 2.6.0 and CUDA

11.5 as provided by the system’s software module stack.

During training, the 132 monthly netCDF-files (providing 94052 training samples) are split into four

subsets that are iteratively pipelined through the model. Thus, training data is not cached during

training, although the dataset size (about 62 GB) would allow for it.

The overall results attained in this benchmark test are similar to the results in D2-3. The first epoch

(batch) takes significantly more time than the subsequent epochs (batches) due to the initialisation

overhead (building up the computation graph and first data loading). The small temporal distance

between the minimum and the median indicates that the training process shows little fluctuation

and that the mean is strongly influenced by the first epoch (batch) due to the small number of

epochs probed here. The strong agreement between processing times on the CPU and GPU

furthermore indicate that the application is not I/O bottlenecked which can furthermore be verified

from the LLview job reports available for jobs on JURECA DC.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 15

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch (CPU) 898.971 925.9487 906.38677 1007.75919 46.30957

Batch (CPU) 0.20732 0.29217 0.22048 75.90584 0.73326

Batch (GPU) 0.20733 0.29220 0.22050 75.88095 0.73308
Table 6: Benchmarking results for Application 5.

4.6 Application 6: Provide Bespoke Weather Forecasts to Support Energy Production

in Europe

Application 6 explores the potential of weather models influenced by extensive weather patterns

across Europe to diminish the uncertainty associated with power forecasting for wind and solar

resources. To achieve this, we make use of a nonlinear Deep Learning algorithm that was developed

for unsupervised clustering in image recognition. [5]

For benchmarking we use the same model architecture and configuration, and dataset as in D3-7,

and train the model for 20 epochs. The benchmarks are performed on a single node of the JUWELS

Booster system with a single A100 GPU (40 GB VRAM) with the following software configuration:

- CUDA 12.1.0

- Python 3.11

- PyTorch 2.2.1

Data processing is performed on the CPU, whereas the model is trained on the GPU.

The benchmarks show the epoch time is stable throughout the training process with no large

difference between minimum and maximum, and median and mean being very close with a low

standard deviation. This is almost equally true for the batch time, although the batch time has a

significantly lower minimum, which becomes irrelevant though due to the small standard deviation.

IO, Forward and Backward times reveal that IO is the training step that accounts for most of the

runtime of the algorithm. This is expected, however, since the algorithm by design doesn’t allow any

sort of caching since it relies on various different data augmentation strategies to create random

subsamples for each data point of a given batch. This is also included in the measurement of the IO

times.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 16

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch (CPU) 220.97855 221.93730 221.77043 224.89921 0.89980

Batch (CPU) 0.04801 0.64551 0.64088 3.41739 0.05295

Batch (GPU) 0.04802 0.64552 0.64088 3.41728 0.05295

IO (CPU) 0.01964 0.59473 0.59078 2.24408 0.04050

Forward (CPU) 0.01097 0.01377 0.01359 0.86987 0.01075

Forward (GPU) 0.01095 0.01372 0.01355 0.86981 0.01075

Backward (CPU) 0.01467 0.01523 0.01485 1.81851 0.02274

Backward (GPU) 0.01545 0.01889 0.01854 1.81861 0.02269
Table 7: Benchmarking results for Application 6.

4.7 Application 7: Data Assimilation

Application 7 explores a pure machine learning approach for data assimilation. We create a

denoising diffusion model with a GraphCast backbone. The model performs data assimilation by

sampling from the posterior distribution of 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑦) where 𝑋𝑡−1 and 𝑋𝑡 are gridded

atmosphere states at time steps 𝑡 − 1 and 𝑡, and 𝑦 is a sparse measurement of 𝑋𝑡. It starts from a

pure white with the same shape as 𝑋, denoises the inputs in multiple iterations, and finally results in

a plausible sample from the target distribution. To guide the generation of each samples, the

conditioning of 𝑋𝑡−1 is added to the process by allowing it as the second input of the denoising

diffusion model. This requires training a dedicated model with two inputs. In contrast, we apply the

conditioning of 𝑦 only in the inference process using inpainting techniques: in each denoising

iteration, the denoised state is mixed with the measurements in 𝑦. To enhance the effect of the

conditioning, we augment 𝑦 with interpolated values in the neighbouring regions of measurement

locations before mixing it with the denoised state.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 17

Figure 4: Architecture of the diffusion based data assimilation method (from [4]). We take advantage of the
input and output shape of the pretrained GraphCast model which takes the state of the atmosphere at two

time steps as input. In each iteration of the denoising diffusion process in our method, the adapted GraphCast
model takes the predicted state and the assimilated state with noise, and further denoises assimilated state. To
enforce the observations at inference time, the denoised state is merged with interpolated observations using a

soft mask created by blurring the hard mask of the original observations.

With the help of the GraphCast [7] backbone, we are able to run data assimilation with 6 pressure

level variables and 5 surface level variables at a spatial resolution of 0.25 degree globally (~ 25 km

resolution) and 13 pressure levels. The model is implemented in the JAX framework and trained with

48 NVIDIA A100 80GB GPUs in the CSCS research cluster. We use a subset of the ERA5 dataset as the

training data containing 6 hourly data for each variable from 1979 to 2016 with a total size of around

25 TB. The training lasts for 2 days with 20 epochs and a (global) batch size of 56.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 18

Figure 5: Root mean square error (RMSE) of geopotential at 500hPa, temperature at 850hPa, and temperature
at 2m from the single step assimilated data and GraphCast forecast data (shown by the numbers in the cell).

The error is calculated against the ERA5 data. The cells are color-coded with the RMSE relative to the 6h
forecast RMSE where green means better and red means worse. The figure and results are from [4].

We test our method by running data assimilation from a 48-hour GraphCast prediction and columns

of simulated observations ranging from 1,000 to 40,000, then calculating the error between the

assimilated data and the ERA5 data. The simulated observations columns are taken from the ERA5

dataset. With only 1,000 observed columns (<0.1% total columns), the assimilated data achieves

lower RMSEs than the input 48-hour forecast for z500 (geopotential at 500hPa) and t850

(temperature at 850hPa). The errors of t2m (temperature at 2m) are even lower than the 6-hour

forecast. The errors further decrease as the number of observed columns increases. On the other

side of the spectrum, with 40,000 observed columns (<3.9% total columns), the RMSEs of all three

variables are lower than the 6-hour forecast error. This indicates our assimilation method can

improve over the given predicted state while remaining consistent with the observations.

When used as an input for forecast models, those assimilated data resulted in a maximum lead time

loss of 24 hours compared with using the ERA5 dataset as inputs. This enables running data

assimilation and simulation in an autoregressive cycle.

All the data assimilation experiments can run on a single high-end PC with a GPU within 15-30

minutes per data assimilation step, while a similar task using traditional methods typically requires

large compute clusters. This indicates a significant reduction in computational costs. It also opens up

the possibility of assimilating more observational data that is otherwise discarded by traditional

methods and producing assimilated data with higher accuracy.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]

Epoch 7314.87 7344.07 7337.00 7437.38 34.65

Batch 6.30 10.11 10.11 12.51 0.13

Computation 5.77 9.74 9.74 12.02 0.13

IO 0.25 0.37 0.36 1.39 0.06
Table 8: Benchmarking results for Application 7 on JAX.

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 19

5 Conclusion

This deliverable outlines the MAELSTROM software benchmarking infrastructure and presents the

outcomes of the benchmarking conducted on the machine learning solutions from Deliverable 1.4.

We also include a new application (AP7 from ETH) and benchmark it using our API on top of

Deep500. The benchmarking infrastructure proves its simplicity (and ease of use) across all

applications and we show a unified way of benchmarking different applications.

6 References

[1] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, and Torsten

Hoefler. “A modular benchmarking infrastructure for high-performance and reproducible deep

learning.” In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019.

[2] Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi,

Luca Kummer, and Torsten Hoefler. “ENS-10: A dataset for post-processing ensemble weather

forecasts.” In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[3] Pengcheng He, Jianfeng Gao, and Weizhu Chen. “DeBERTaV3: Improving DeBERTa using ELECTRA-

Style Pre-Training with Gradient-Disentangled Embedding Sharing.” arXiv preprint:2111.09543, 2021.

[4] Huang, Langwen, Lukas Gianinazzi, Yuejiang Yu, Peter D. Dueben, and Torsten Hoefler. "DiffDA: a

diffusion model for weather-scale data assimilation." arXiv preprint arXiv:2401.05932 (2024).

[5] Caron, Mathilde, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski and Armand Joulin.

“Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.” ArXiv

abs/2006.09882 (2020): n. pag.

[6] Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,

Ferran Alet, Suman Ravuri et al. "GraphCast: Learning skillful medium-range global weather

forecasting." arXiv preprint arXiv:2212.12794 (2022).

MAELSTROM 2022

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 20

Document History

Version Author(s) Date Changes

0.1 Saleh Ashkboos (ETH) 02/02/2024 Initial draft

Internal Review History

Internal Reviewers Date Comments

Peter Dueben (ECMWF) 21/03/2024 Minor comments and
suggestions provided

Peter Duebenn (ECMWF) 24/03/2024 Minor comments and
suggestions provided

Mats Brorsson (UL-SNT) 24/03/2024 Minor comments

Estimated Effort Contribution per Partner

Partner Effort

ETH 1 PM

4cast 1 PM

Total 2 PM

This publication reflects the views only of the author, and the European High-Performance

Computing Joint Undertaking or Commission cannot be held responsible for any use which may be

made of the information contained therein.

