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1 Executive Summary 

This delivery is a report on software performance benchmarking for machine learning solutions. 

● Software benchmarking tools are on track and benchmarks have been completed. 

● A comprehensive timing infrastructure for benchmarking deep learning applications has 

been developed. 

● The machine learning solutions from Deliverable 1.4 have been benchmarked and the results 

are documented in this report. 

● A new application (AP7) is presented (from ETH) which is exploring the use of machine 

learning for data assimilation in numerical weather prediction. The application is 

implemented in JAX and benchmarked using our infrastructure.  
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2 Introduction 

2.1 About MAELSTROM 

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and 

solution accuracy. Customized compute systems will be designed that are optimized for application 

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward needs of weather and 

climate applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with compute system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the 

workflow of weather and climate predictions including the processing of observations, the 

assimilation of observations to generate initial and reference conditions, model simulations, as well 

as post-processing of model data and the development of forecast products. For each application, 

benchmark datasets with up to 10 terabytes of data will be published online for training and 

machine learning tool-developments at the scale of the fastest supercomputers in the world. 

MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning 

applications on supercomputers in the future. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The objective of Deliverable 2.6 is to employ and enhance the benchmarking framework established 

within Work Package 2 for assessing the software performance of machine learning applications 

within the MAELSTROM project. The benchmarking process should be easy to incorporate with 

minimal interference in application performance, yet offer comprehensive insights for users to 

recognize bottlenecks or performance declines resulting from modifications. This framework is 

intended to empower MAELSTROM applications to offer actionable insights through routine 

performance evaluations. 
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2.2.2 Work performed in this deliverable 

In the following, we present the tasks completed in this deliverable: 

● An easy-to-use interface for timing (and benchmarking) the applications using Deep500 was 

developed. 

● The software benchmarking of MAELSTROM applications using the introduced interface was 

performed. 

● The software benchmarking results of Application 6 were included for the first time in this 

deliverable. 

● A new application for data assimilation was introduced and benchmarked using our software 

benchmarking tools. 

 

2.2.3 Deviations and counter measures 

Software benchmark did not turn out to be as important for the MAELSTROM project as anticipated 

during the proposal-writing phase. This is mainly the case as the number of competitive software 

packages for machine learning in high performance computing has reduced significantly over the last 

years. Instead of a large zoo of libraries, the main environments that are used today are Pytorch, 

TensorFlow and JAX. After extensive consultations with the application teams, particularly during the 

last MAELSTROM General Assembly, it was determined to revise the primary objective of the current 

deliverable.  While an additional round of benchmarking with the Deep500 framework was 

conducted for all applications in PyTorch and Tensorflow, a new application from ETH was developed 

by ETH, referred to as AP7 in this deliverable. For Deep500, we have devised a lightweight timing 

infrastructure that can seamlessly integrate into existing applications with minimal adjustments 

along with the development of an accessible API. Regardless of the approach, detailed software 

benchmarking results will continue to be generated. 

 

3 Benchmarking Infrastructure by Work Package Tasks 

We detail recent progress in the MAELSTROM workflow and software benchmarking packages. In 

the first part, we present a brief introduction to the new application for data assimilation. Then, we 

present the general idea of our benchmarking tools in this deliverable. 

 

3.1 New Application AP7: Data assimilation for numerical weather predictions via 

machine learning 

Modern weather forecasts heavily rely on numerical weather predictions. These predictions depend 

on data assimilation, which uses sparse observations to create initial conditions on a model grid. 

Errors in these initial conditions are a major reason for errors in forecasts. Data assimilation is also 

used to generate reanalysis datasets like ERA5, which recreate past weather in grid form. These 

datasets are crucial for weather and climate research and for training global weather forecast 

models that use machine learning. 
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Different techniques for data assimilation have been developed to handle various aspects of 

observation data and system dynamics. Among these, variational data assimilation and ensemble 

Kalman filter are the two most commonly used methods in operational data assimilation. Both 

approaches require considerable computational resources: the variational method demands 

multiple optimization iterations and the Kalman filter method performs numerous ensemble 

simulations. While a number of recent papers have shown the successful use of sophisticated 

machine learning models to build entire weather forecast models that are competitive with state-of-

the-art conventional models (e.g. Graphcast, Fourcastnet, PanguWeather and Gencast), we present 

one of the first approaches to use machine learning models for data assimilation. 

 

Figure 1: Diagram of numerical weather forecast pipeline. It consists of data assimilation, forecast and post-
processing. Data assimilation produces gridded values from sparse observations and predicted gridded values 
from previous time steps. Forecast takes in gridded values and produces predictions in gridded values at future 

time steps. Post-processing improves forecast results such that it is closer to future observations.. 

From a probabilistic standpoint, data assimilation can be understood as sampling from a probability 

distribution of atmospheric states, taking into account observations and predicted states. Given its 

capacity to tackle conditional sampling, denoising diffusion models emerge as a promising option for 

data assimilation. Furthermore, the expanding realm of diffusion models offers a range of 

techniques for imposing various conditions. Particularly noteworthy are conditioning techniques for 

tasks like in-painting and super-resolution, which bear similarities to conditioning based on 

observations and predicted states, respectively. 

While this approach using denoising diffusion models has been applied in smaller-scale data 

assimilation problems, none have been able to assimilate data at resolutions comparable to the 

ERA5 dataset (0.25 degree horizontal resolution), limiting their utility with machine learning forecast 

models. Similarly, denoising diffusion techniques have found application in weather forecasts and 

post-processing. For instance, GenCast capables of performing ensemble forecasts at a 1-degree 

resolution. 

In this application, we introduce DiffDA [4], a novel approach to data assimilation centered around 

the denoising diffusion model, specifically tailored for weather and climate applications. Our method 

is capable of assimilating data with a resolution of 0.25 degrees with 13 vertical levels, leveraging the 

GraphCast ML weather forecast model as the backbone of the diffusion model. The work has already 

resulted in a scientific paper [4]. 

During the training phase, the diffusion model is conditioned by predicted states generated by the 

forecast model from earlier initial conditions. In the inference stage, we further condition the model 

with sparse column observations following the Repaint technique. Additionally, we employ a soft 
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mask and interpolated observations to reinforce conditioning, leveraging the continuity of 

atmospheric variables. 

Through this approach, the assimilated data can gradually converge towards the ground truth data 

as the number of samples increases. 

 

3.2 Benchmarking Tools, Deployment, and Infrastructure (Tasks 2.3 and 2.6) 

 

Deep500 [1] is a modular benchmarking tool that is developed to test high-tech deep learning 

programs. In this deliverable, we provide a simple and easy-to-use interface for Deep500 for dealing 

with weather and climate applications. We repeat the benchmarking of the applications in the 

MAELSTROM Deliverable 2.3 with the advanced versions of the MAELSTROM applications in this 

deliverable. 

Our main focus is on making sure we can accurately measure and note important parts of a 

program's performance, like how long it takes to read and write data, and the time it takes for the 

program to learn from its mistakes. We also made sure Deep500 could handle any kind of program, 

no matter how it was built. Furthermore, we made sure it could easily connect with other programs 

used for keeping track of performance. 

 

3.2.1 Timing for Machine Learning Applications 

We added a new feature to Deep500 called the Timer. It lets developers mark the start and end of 

a section they want to measure. Then, it calculates how much time passed between the start and 

end. This feature gives developers the freedom to measure time in detail or in broad strokes. Each 

section is labeled with a key to describe what it's measuring, to make it easier to work with multiple 

timers within a single programme. Sections with different labels can overlap or be nested inside each 

other, which helps to break down the timing into details even more. 

A timer is created as follows: 

tmr = timer.Timer() 

 

Then, the object can measure the time for every block of code. We define the following keys 

for the timer object: 

● timer.TimeType.EPOCH - one complete pass over a dataset 

● timer.TimeType.BATCH - one mini-batch 

● timer.TimeType.FORWARD - forward propagation for one mini-batch 

● timer.TimeType.BACKWARD - backward propagation for one mini-batch 

● timer.TimeType.COMM - communication during one mini-batch 

● timer.TimeType.IO - I/O to load data for one mini-batch 

● timer.TimeType.OTHER - a catch-all for a user-defined region 
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Finally, the timer can be extended for measuring other parts of the code. 

3.2.2 Timer Example Usage 

Figure 2 shows the usage of our timer to measure the time of a single epoch in PyTorch. 

 

Figure 2: Example of measuring epoch runtime using Deep500 timer. 

 

3.2.3 Timer Logging 

Different deep-learning workloads use different logging frameworks. To this end, we provide several 

ways of logging the recorded times using our timers. We support both MLFlow and WandB in our 

timer. Currently, there are several ways to retrieve or save timing results. 

● tmr.get_time(key) will return a list of all times recorded for key. 

● tmr.get_time_stats(key) will return an object with various summary statistics for 

all times recorded for key. 

● tmr.print_all_time_stats() will print (to stdout) summary statistics for all 

times recorded for all keys. 

● tmr.save_all_time_stats(filename) is similar, but will write the output to the 

file named by filename. 

● tmr.log_wb_all(prefix='') will log the mean time of all keys recorded to Weights 

& Biases (optionally prepending prefix to the logging keys). 

● tmr.log_mlflow_all(prefix='') is similar, but will log to MLFlow instead. 

 

3.2.4 Timing GPU codes in PyTorch and TensorFlow 

Code running on the GPU typically executes asynchronously (i.e., the CPU launches a series of 

kernels, but does not wait for their computations to complete, only checking later). This means that 

timing solely on the CPU may not adequately reflect the actual computation time for certain regions. 

When using PyTorch or TensorFlow, we also support adding timers for GPU kernels. For PyTorch, this 

is low-overhead; due to technical issues, there can be additional overheads with TensorFlow. 

To solve this issue, we made the Timer class flexible and adaptable. By default, it uses standard high-

quality timers found in computer processors. Additionally, we created a special timer for regions 

using GPUs called CUDA events. These events are a part of the CUDA system, used for measuring 

time on graphics cards. They only communicate with the main processor when needed, so they don't 

slow down the program much. 
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However, in the current setup, timing on GPUs might be slower when using frameworks other than 

PyTorch, like TensorFlow. This is because those frameworks don't show the inner workings of CUDA 

streams, making timings harder. We're working on updating our tools to fix this issue. 

 

3.2.5 TensorFlow/Keras Support 

Deep500 has a simple way to measure time on the CPU, which can be used in Deep500 recipes. Also, 

it can time specific parts of a program using its events feature. Our Timer feature does more—it can 

also time things on the GPU and keep track of what's happening. However, most programs in D1.4 

aren't made to work with Deep500 for their benchmarking. However,  users can add timing to their 

programs without changing anything or needing extra software. 

To fix this, we extend our timing API to be compatible with TensorFlow/Keras. In such frameworks, 

the user usually involves a training loop using model.fit()and does not explicitly define training 

loops. We provide a callback that supports epoch- and batch-level timing during training. 

The figure 3 shows an example of using our API for measuring the time for a TensorFlow program. 

 

 

Figure 3: Example of using our timing API in TensorFlow. 

 

4 Software Benchmarking Results 

Working alongside the application teams of Work Package 1, we employed the Deep500 timing 

infrastructure to carry out the initial software benchmarking of the machine learning solutions 

detailed in Deliverable 1.4. With the support of Work Package 2, each application seamlessly 

integrated the timers and executed benchmarks to yield these findings. Subsequently, in Deliverable 

1.4, we presented a comprehensive software benchmarking analysis for all applications leveraging 

Deep500. Here, we present another round of software benchmarking using the API we developed on 

top of Deep500 (the code is available at this repo: https://github.com/sashkboos/Deep500-for-

MAELSTROM).  

We unify all the benchmarking across all the applications and report the time for each epoch for 

both forward and backward pass as well as IO.  Additionally, we include the benchmarking results of 

the new application (AP7 from ETH) about data assimilation. Below we report the results for each 

application, along with brief details of their benchmarking setup.  

 

https://github.com/sashkboos/Deep500-for-MAELSTROM
https://github.com/sashkboos/Deep500-for-MAELSTROM


MAELSTROM 2022 

 
 

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 12 
 

4.1 Application 1: Blend Citizen Observations and Numerical Weather Forecasts 

Application 1 aims to produce high-resolution (1x1 km) hourly temperature forecasts for the Nordic 

countries, 58 hours into the future. 

The benchmark consists of training a U-Net on a subset of the A1 dataset. We used the same model 

configuration as in D3-7. We chose a small subset (9 out of 362 available training files) of the dataset 

and ran it for 10 epochs. The 124GB training data was not cached in memory (even though it fits) in 

order to simulate the expected performance when running on the full dataset. 

We ran the benchmark on a single 40GB A100 GPU on the JURECA system. We used NVIDIA’s 

tensorflow container, which includes Python3.8, TensorFlow 2.12, and CUDA 12.1. As in other 

deliverables, the data processing for this application was done on the CPU, and the training on the 

GPU. 

The variability of the processing times are relatively low, as the minimum times are close to the 

median times. The exception is the first batch, which is significantly slower than the others. This is 

due to the fact that it includes the data loading time for the first file and framework initialization 

overhead. This is similar to the results we got in D2.3. 

 

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch (CPU) 113.47643 121.92249 120.18363 142.09439 8.50714 

Batch (CPU) 0.07399 0.11428 0.08892 15.80655 0.19250 

Batch (GPU) 0.07400 0.11430 0.08895 15.80662 0.19251 
Table 1: Benchmarking results for Application 1. 

 

4.2 Application 2: Incorporate Social Media Data into the Prediction Framework 

Application 2 aims to use data provided by social media and weather sensors. Here, we use the text 

of Tweets to predict the occurrence of rain at the Tweet’s location and time of creation. 

We initialise the small variant of the DeBERTa model [3] with pre-trained weights from the Hugging 

Face repository1. We finetune the model during one epoch on our large dataset (~1.6 Mio. Tweets).  

We used the transformer package (Version 4.38.2) with the PyTorch backend (Version 2.2.1) to train 

our model on a NVIDIA Tesla A100 from the Jülich Supercomputing Centre (JSC) using CUDA 11.7. 

Batch, forward, and backward time was measured using GPU-side timing. 

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch 180.14980 180.14980 180.14980 180.14980 0.00000 

Batch 0.11619 0.13142 0.12229 8.32839 0.24195 

Forward 0.05676 0.06631 0.05759 7.70765 0.22562 

Backward 0.04796 0.04861 0.04843 0.18809 0.00414 
Table 2: Benchmarking results for Application 2. 

 

 
1 https://huggingface.co/microsoft/deberta-v3-small/tree/main 
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4.3 Application 3: Neural Network Emulators to Speed Up Weather Forecast Models 

and Data Assimilation 

Application 3 seeks to emulate the radiative transfer process for both short and long wavelengths, a 

columnar problem found within all weather and climate models. 

For this software benchmarking exercise, we have used Tensorflow Version 2.11 with CUDA  11.7, 

using one A100 GPU from Jülich JURECA DC module. The model used  is a predominantly RNN 

architecture, specifically using LSTM blocks to propagate information in the vertical dimension. 

Details of the architecture can be found in D1.3 and D1.4.  

Training has been carried out following the same methodology already introduced in previous 

software and hardware benchmarking exercises. In this case, we use 5 epochs, and limit the number 

of batches per epoch to 1000. 

Epoch time was  measured using GPU-side and CPU-side timing, while batch time was measured 

using CPU-side timing.  

Similarly to the previous deliverable, for the batch time the maximum time is larger than the mean 

and median time, but the low standard deviation indicates that this should be treated as an outlier 

due to the initialization overheads that occur in the first batch. That overhead can also be seen in the 

case of the epoch time, where the maximum recorded is probably associated with the first epoch.  

 

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch (CPU) 86.65345 104.82769 88.62053 170.86387 36.95771 

Batch (CPU) 0.02116 0.07561 0.07220 13.67991 0.19281 

Batch (GPU) 0.02117 0.07562 0.0722 13.67990 0.19281 
Table 3: Benchmarking results for Application 3. 

 

4.4 Application 4: Improve Ensemble Predictions in Forecast Post-Processing 

Application 4 aims to apply deep neural models to post-process the ensemble outputs of ensemble 

numerical weather prediction systems to improve the quality and skill of forecasts. We use ENS-10 

[2] dataset with a U-Net style model and trained for 3 epochs with different batch sizes and the 

Adam optimizer, following the prior methodology. We used NetCDF format for saving the dataet. 

Training was performed using PyTorch 1.13.1 and TensorFlow 2.11.0 on a single 40 GB A100 GPU 

from local ETH computing resources using CUDA 11.6.2. Batch, forward, and backward time was 

measured using GPU-side timing. 

After benchmarking the experiments with PyTorch and TensorFlow, we found that our results are 

quite similar to the last deliverable. This is expected as the application is unchanged and the 

infrastructure is also the same. Tables 4-1 and 4-2 summarise our results on both PyTorch and 

TensorFlow frameworks. 
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Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch 180.12 188.1 183.3 199.7 10.3 

Batch 0.053 0.15 0.14 5.99 0.57 

Forward 0.006 0.007 0.006 5.1 0.054 

Backward 0.015 0.016 0.015 0.43 0.007 

IO 0.03 0.11 0.11 5.8 0.19 
Table 4: Benchmarking results for Application 4 in PyTorch. 

 

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch 195.1 252.1 263.1 288.2 36.18 

Batch 0.05 0.15 0.09 33.1 1.3 

IO 3e-4 0.04 2e-3 2.7 0.62 
Table 5: Benchmarking results for Application 4 TensorFlow. 

 

Comparing two tables, we can see that TFRecords (in TensorFlow) reduces the IO by order of 
magnitude. However, the total time for each epoch is not that much different from PyTorch 
implementation due to other framework related overheads.  

 

4.5 Application 5: Improve Local Weather Predictions in Forecast Post-Processing 

Application 5 explores the usage of deep neural networks for statistical downscaling of 

meteorological fields. The Tier-2 dataset, which is tested here, is designed for downscaling the 2m 

temperature from ERA5 reanalysis data with 𝛥𝑥𝐸𝑅𝐴5 ≃ 30 km to the spatial resolution of the 

COSMO REA6 dataset (𝛥𝑥𝐶𝑅𝐸𝐴6 ≃ 6 km). 

The same WGAN configuration and dataset as used in D3-7 has been used. Compared to D2-3, this 

results in an increased number of trainable parameters (about 9M instead of 5M) and a larger 

number of predictor variables (15 instead of 10). For this benchmark, the downscaling model has 

been trained for 5 epochs on a single A100 GPU on JURECA DC using Tensorflow 2.6.0 and CUDA 

11.5 as provided by the system’s software module stack.  

During training, the 132 monthly netCDF-files (providing 94052 training samples) are split into four 

subsets that are iteratively pipelined through the model. Thus, training data is not cached during 

training, although the dataset size (about 62 GB) would allow for it. 

The overall results attained in this benchmark test are similar to the results in D2-3. The first epoch 

(batch) takes significantly more time than the subsequent epochs (batches) due to the initialisation 

overhead (building up the computation graph and first data loading). The small temporal distance 

between the minimum and the median indicates that the training process shows little fluctuation 

and that the mean is strongly influenced by the first epoch (batch) due to the small number of 

epochs probed here. The strong agreement between processing times on the CPU and GPU 

furthermore indicate that the application is not I/O bottlenecked which can furthermore be verified 

from the LLview job reports available for jobs on JURECA DC.  

 



MAELSTROM 2022 

 
 

D2.6 Report on software performance benchmarking for ML solutions from deliverable D1.4 15 
 

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch (CPU) 898.971 925.9487 906.38677 1007.75919 46.30957 

Batch (CPU) 0.20732 0.29217 0.22048 75.90584 0.73326 

Batch (GPU) 0.20733 0.29220 0.22050 75.88095 0.73308 
Table 6: Benchmarking results for Application 5. 

 

 

4.6 Application 6: Provide Bespoke Weather Forecasts to Support Energy Production 

in Europe 

Application 6 explores the potential of weather models influenced by extensive weather patterns 

across Europe to diminish the uncertainty associated with power forecasting for wind and solar 

resources. To achieve this, we make use of a nonlinear Deep Learning algorithm that was developed 

for unsupervised clustering in image recognition. [5] 

For benchmarking we use the same model architecture and configuration, and dataset as in D3-7, 

and train the model for 20 epochs. The benchmarks are performed on a single node of the JUWELS 

Booster system with a single A100 GPU (40 GB VRAM) with the following software configuration: 

- CUDA 12.1.0 

- Python 3.11 

- PyTorch 2.2.1 

Data processing is performed on the CPU, whereas the model is trained on the GPU. 

 
The benchmarks show the epoch time is stable throughout the training process with no large 

difference between minimum and maximum, and median and mean being very close with a low 

standard deviation. This is almost equally true for the batch time, although the batch time has a 

significantly lower minimum, which becomes irrelevant though due to the small standard deviation. 

IO, Forward and Backward times reveal that IO is the training step that accounts for most of the 

runtime of the algorithm. This is expected, however, since the algorithm by design doesn’t allow any 

sort of caching since it relies on various different data augmentation strategies to create random 

subsamples for each data point of a given batch. This is also included in the measurement of the IO 

times. 
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Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch (CPU) 220.97855 221.93730 221.77043 224.89921 0.89980 

Batch (CPU) 0.04801 0.64551 0.64088 3.41739 0.05295 

Batch (GPU) 0.04802 0.64552 0.64088 3.41728 0.05295 

IO (CPU) 0.01964 0.59473 0.59078 2.24408 0.04050 

Forward (CPU) 0.01097 0.01377 0.01359 0.86987 0.01075 

Forward (GPU) 0.01095 0.01372 0.01355 0.86981 0.01075 

Backward (CPU) 0.01467 0.01523 0.01485 1.81851 0.02274 

Backward (GPU) 0.01545 0.01889 0.01854 1.81861 0.02269 
Table 7: Benchmarking results for Application 6. 

 

4.7 Application 7: Data Assimilation 

Application 7 explores a pure machine learning approach for data assimilation. We create a 

denoising diffusion model with a GraphCast backbone. The model performs data assimilation by 

sampling from the posterior distribution of 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑦) where 𝑋𝑡−1 and 𝑋𝑡 are gridded 

atmosphere states at time steps 𝑡 − 1 and 𝑡, and 𝑦 is a sparse measurement of 𝑋𝑡. It starts from a 

pure white with the same shape as 𝑋, denoises the inputs in multiple iterations, and finally results in 

a plausible sample from the target distribution. To guide the generation of each samples, the 

conditioning of 𝑋𝑡−1 is added to the process by allowing it as the second input of the denoising 

diffusion model. This requires training a dedicated model with two inputs. In contrast, we apply the 

conditioning of 𝑦 only in the inference process using inpainting techniques: in each denoising 

iteration, the denoised state is mixed with the measurements in 𝑦. To enhance the effect of the 

conditioning, we augment 𝑦 with interpolated values in the neighbouring regions of measurement 

locations before mixing it with the denoised state.  
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Figure 4: Architecture of the diffusion based data assimilation method (from [4]). We take advantage of the 
input and output shape of the pretrained GraphCast model which takes the state of the atmosphere at two 

time steps as input. In each iteration of the denoising diffusion process in our method, the adapted GraphCast 
model takes the predicted state and the assimilated state with noise, and further denoises assimilated state. To 
enforce the observations at inference time, the denoised state is merged with interpolated observations using a 

soft mask created by blurring the hard mask of the original observations. 

 

With the help of the GraphCast [7] backbone, we are able to run data assimilation with 6 pressure 

level variables and 5 surface level variables at a spatial resolution of 0.25 degree globally (~ 25 km 

resolution) and 13 pressure levels. The model is implemented in the JAX framework and trained with 

48 NVIDIA A100 80GB GPUs in the CSCS research cluster. We use a subset of the ERA5 dataset as the 

training data containing 6 hourly data for each variable from 1979 to 2016 with a total size of around 

25 TB. The training lasts for 2 days with 20 epochs and a (global) batch size of 56. 
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Figure 5: Root mean square error (RMSE) of geopotential at 500hPa, temperature at 850hPa, and temperature 
at 2m from the single step assimilated data and GraphCast forecast data (shown by the numbers in the cell). 

The error is calculated against the ERA5 data. The cells are color-coded with the RMSE relative to the 6h 
forecast RMSE where green means better and red means worse. The figure and results are from [4]. 

 

We test our method by running data assimilation from a 48-hour GraphCast prediction and columns 

of simulated observations ranging from 1,000 to 40,000, then calculating the error between the 

assimilated data and the ERA5 data. The simulated observations columns are taken from the ERA5 

dataset. With only 1,000 observed columns (<0.1% total columns), the assimilated data achieves 

lower RMSEs than the input 48-hour forecast for z500 (geopotential at 500hPa) and t850 

(temperature at 850hPa). The errors of t2m (temperature at 2m) are even lower than the 6-hour 

forecast. The errors further decrease as the number of observed columns increases. On the other 

side of the spectrum, with 40,000 observed columns (<3.9% total columns), the RMSEs of all three 

variables are lower than the 6-hour forecast error. This indicates our assimilation method can 

improve over the given predicted state while remaining consistent with the observations. 

When used as an input for forecast models, those assimilated data resulted in a maximum lead time 

loss of 24 hours compared with using the ERA5 dataset as inputs. This enables running data 

assimilation and simulation in an autoregressive cycle.  

All the data assimilation experiments can run on a single high-end PC with a GPU within 15-30 

minutes per data assimilation step, while a similar task using traditional methods typically requires 

large compute clusters. This indicates a significant reduction in computational costs. It also opens up 

the possibility of assimilating more observational data that is otherwise discarded by traditional 

methods and producing assimilated data with higher accuracy. 

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s] 

Epoch 7314.87 7344.07 7337.00 7437.38 34.65 

Batch 6.30 10.11 10.11 12.51 0.13 

Computation 5.77 9.74 9.74 12.02 0.13 

IO 0.25 0.37 0.36 1.39 0.06 
Table 8: Benchmarking results for Application 7 on JAX. 
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5 Conclusion 

This deliverable outlines the MAELSTROM software benchmarking infrastructure and presents the 

outcomes of the benchmarking conducted on the machine learning solutions from Deliverable 1.4. 

We also include a new application (AP7 from ETH) and benchmark it using our API on top of 

Deep500. The benchmarking infrastructure proves its simplicity (and ease of use) across all 

applications and we show a unified way of benchmarking different applications. 
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