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2m temperature field from the ERA5-reanalysis 
(∆𝑥𝑥 = 0.25°) on 2018-12-01,13:00 CET.
2m temperature field from COSMO-REA6 
(∆𝑥𝑥 = 0.055°) on 2018-12-01,13:00 CET.

• High-resolved weather data is crucially demanded
• Recent success of deep learning for statistical 

downscaling (e.g. Mardani et al., 2023, 
Harder et al., 2023, Harris et al., 2022)

• Intercomparison difficult:
o Variety of downscaling tasks
o Different datasets 
o Different evaluation methods

• Benchmark datasets steer progress in AI, e.g. 
ImageNet (Deng et al., 2009), GLUE (Wang et al., 2018)

• For meteorological applications, benchmarks such as 
WeatherBench 2 (Rasp et al., 2023) are rare 

MOTIVATION
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Why do we need a benchmark dataset?



THE BENCHMARK DATASET
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Design choices and components of the benchmark dataset

• Benchmark dataset closely follows requirements listed in Dueben et al., 2022
1) Clear problem statement for real-life task
2) Open data provision in high-level programming language
3) Results and code of baseline competitor models
4) Evaluation metrics defined 
5) Visualization and diagnostics in code

1) Downscaling task(-s):
Emulate a highly-resolved reanalysis (COSMO REA6) of i) 2m temperature, 
ii) 100m wind and iii) global horizontal irradiance from the ERA5-reanalysis



THE BENCHMARK DATASET
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Design choices and components of the benchmark dataset

2) The data:
• Predictands from COSMO-REA6 data 

(∆𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 0.055°)
• Task-specific set of predictor variables from the 

ERA5-reanalysis dataset (∆𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0.25°)
• Data pairing after re-projection of ERA5-data onto 

rotated pole grid (∆𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 4∆𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 0.225°)
• Provision via climetlab-plugin  conversion to 

xarray.Dataset and netCDF

Surface topography form COSMO REA6. The target 
domain of the downscaling benchmark comprises 
144x128 grid points and is rendered.

https://climetlab.readthedocs.io/


THE BENCHMARK DATASET
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Design choices and components of the benchmark dataset

3) Baseline competitor models
a) Deep neural networks:

o U-Net by Sha et al., 2020 (tuned)

o DeepRU (U-Net variant) by Höhlein et al., 2020

o WGAN with U-Net by Sha as generator

o WGAN by Harris et al., 2022

o SwinIR by Liang et al., 2021

b) Classical statistical model:
o Standardized Anomaly MOS (SAMOS) 

by Dabernig, 2017

Illustration of the WGAN with the U-Net by Sha et al. 
(2020) as generator.
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Design choices and components of the benchmark dataset

4&5) Evaluation metrics and diagnostics
• Task-specific set of evaluation metrics 
• Diagnostics for marginal distribution, e.g. power spectra and 

histograms
• Various plot products
• Two postprocessing steps:

1) Single model evaluation
2) Intercomparison (in terms of skill scores)

•



SOME PRELIMINARY RESULTS
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Examples from the 2m temperature downscaling task

Dynamic predictors (ERA5 only):
• 2m temperature
• Temperature at model levels 137, 135, 131, 

127 and 122
• 10m (u,v)-wind
• Surface pressure
• Surface latent and sensible heat fluxes
• Boundary layer height

Static predictors (ERA5 & COSMO REA6):
• Surface topography
• Land-sea mask

Evaluation metrics and diagnostics:
• RMSE 
• Bias
• Mean Error of local standard deviation
• Average gradient amplitude error
• Energy spectra analysis
• Conditional Quantile Plots



SOME PRELIMINARY RESULTS
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Examples from the 2m temperature downscaling task

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1.03 KResults from 
Sha WGAN

Averaged metrics 
plotted against daytime

Better
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Examples from the 2m temperature downscaling task

Results from 
Sha WGAN

Season-wise evaluation, 
e.g. RMSE for spring 
months MAM, or …

Better𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1.12 K
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Examples from the 2m temperature downscaling task

Results from 
Sha WGAN

Season-wise evaluation, 
e.g. RMSE for spring 
months MAM, or …
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Examples from the 2m temperature downscaling task

Results from 
Sha WGAN

Various options to 
investigate the spatial 
variability, e.g. with 
power spectra …
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Examples from the 2m temperature downscaling task

Results from 
Sha WGAN

… or in terms of the 
gradient amplitude ratio

Optimal value



SOME PRELIMINARY RESULTS
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Examples from the 2m temperature downscaling task

Intercomparison

Bilinear interpolation as 
(simple) reference 
 to be replaced by 
SAMOS

Better



OUTLOOK

• Finalize model implementations and training
• Full implementation of metrics and diagnostic tools
• Publication of data via climetlab plug-in
• Publication of code on github
• Accompanying paper
Future steps:
• Extension to probabilistic downscaling
• Include precipitation downscaling task
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What’s coming next

Planned for April’ 24

Work initiated by the 
MAELSTROM project



THE DOWNSCALING BENCHMARK TEAM

• Working in a small team is good, working in a motivated collaboration is even better!
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Hard-working collaboration

Michael 
Langguth (JSC)

Ankit Patnala 
(JSC)

Bing Gong 
(JSC,now: SHNU)

Martin Schultz 
(JSC)

Scarlet Stadtler 
(JSC)

Sebastian 
Lehner (GSA)

Irene Schicker 
(GSA)

Markus 
Dabernig (GSA)

Konrad Mayer 
(GSA)

Paula Harder 
(Mila)

GSA: GeosphereAustria
Mila: Mila - Quebec AI Institute
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THE MAELSTROM PROJECT
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A EURO-HPC project to foster ML for meteorological applications

• MAchinE Learning for Scalable meTeoROlogy and cliMate
• Euro HPC project coordinated by ECMWF (Apr’21 – Apr’24)
• Main objectives:

o Develop ML solutions for meteorological applications
o Enable efficient use of new capacities on supercomputers 

for the Weather and Climate community
• Collaboration between meteorologists, software developers 

and HPC specialists  
• Six machine learning applications under development
• Benchmark initiative from Application 5

Headquarter location of all partners of the 
MAELSTROM consortium.
Co-design cycle in MAELSTROM.



DATASETS OF THE DOWNSCALING TASKS
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The 100m (u,v)-wind downscaling task

Dynamic predictors (ERA5 only):
• 100m (u,v)-wind 
• (u,v)-wind at model levels 135, 133, 131, 

127 and 122
• Boundary layer height
• Geopotential height at 500 hPa
• Surface pressure

Static predictors (ERA5 & COSMO 
REA6):
• Surface topography
• Land-sea mask

Evaluation metrics and diagnostics:
• MSE and absolute relative error
• Cosine dissimilarity
• Magnitude difference
• Mean Error of local standard deviation
• Kinetic energy spectra



DATASETS OF THE DOWNSCALING TASKS
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The horizontal global radiation downscaling task

• Post-processed global horizontal irradinace (GHI) from Frank et al., 2018 as target
data (rather than raw COSMO REA6)

Dynamic predictors (ERA5 only):
• Surface net solar radiation
• Top net solar radiation
• High, medium and low cloud cover
• Cloud base height
• Total column liquid water
• Surface pressure
• CAPE
• Evaporation

Static predictors (ERA5 & COSMO REA6):
• Surface topography
• Land-sea mask
• Slope of sub-grid scale orography

Evaluation metrics and diagnostics:
• RMSE 
• MAE
• Bias
• Mean Error of local standard deviation
• Conditional Quantile Plots

https://reanalysis.meteo.uni-bonn.de/?Derived_data_sets___Post-Processed_Radiation
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