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Data-driven models for NWP

Several very competitive models have emerged in the last 2 years
Trained on 40+ years of global reanalysis data (ERA5 at ~¥31km resolution)

Training is expensive (~10s of thousands of GPU hours)

Inference is several orders of magnitude faster than physics-based models
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Data-driven models for NWP
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Graph neural networks for NWP
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Graph neural networks for weather

D Encoder E Processor F Decoder

R
B N
VERRRSANAN

744 N B\ VA
e /7] =RV RARNANY -
- SRR

R

R SORNISORNISOISORN]
SRRSO,
KRS
ERREERRSEL

Learning skillful medium-range global weather forecasting
https://www.science.org/stoken/author-tokens/ST-1550/full



Graph neural networks for weather

e Each neighbour node provides a contribution
e Contributions are aggregated (e.g. summed) O O
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Users expect localized forecasts
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Global vs regional models
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Global vs regional models

Global model (ECMWEF IFS) | Regional model (MEPS)




Regional reanalysis datasets

CARRAZ2 reanalysis at 2.5 km resolution M ,
Time range: 1991-2025 | e

Expected completion: Q3 2026 \ :
Allows us to train high-resolution .

models for Nordic conditions




Stretched-grid AIFS 13

® GNNs allow for arbitrary grid topology

® The grid can be stretched to have higher
resolution over the Nordics

e We can combine the initial state from
ECMWF’s 9 km global model with our
own 2.5 km regional model.

® The goalis that a common model learns
phenomena at the whole range of scales
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Post-processing of temperature

Bias-correction and downscaling of 2.5 km temperature
to at 1x1 km resolution

Architecture: U-Net with 6 levels
Dataset size: 6TB

Targets: Citizen weather stations (Netatmo)
Parameters: 1,314,019

Training time: 12 hours on 4 NVIDIA A-100 GPUs
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Post-processing of temperature
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2.5 km (NWP model) 1.0 km (NWP+ML model)



Destination Earth projects

On-demand Extremes (DE_330)

e NWP modelling at hectometric resolutions
® Impact models
o Hydrology, air pollution, renewable energy, ...

e Machine learning components
o Uncertainty quantification by probabilistic and generative modelling

o Initial-state models

Machine Learning for Earth system Digital Twins (DE_371)

® Generative machine learning methods for
o  Space-time scenarios of multiple parameters given deterministic forecasts
o  Higher temporal resolution



Emulation of CFD model for turbulence forecasting 18

Aviation forecasting at 19 Norwegian airports

e Original system
o MEPS control (2.5 km) — CFD model (100 - 250m)
o 13 lead times, 2 times/day

® New ML-based system

o ML models trained separately for each airport

o relevant variables from MEPS control at model levels (Lambert grid)
as input
3D wind and turbulence on 3D grids (rotated spherical) as targets
18 lead times, 8 times/day
computationally cheap

o O O O

in operation from June 2023




Links 19

e Run data-driven models on your own: https://github.com/ecmwf-lab/ai-models
e ECMWEF weather charts: https://charts.ecmwf.int/
e Open data from MET Norway: https://thredds.met.no/

"The MAELSTROM project has received funding from the European High-Performance Computing Joint Undertaking (JU) Co-ordinated by
under grant agreement No 955513. The JU receives support from the European Union’s Horizon 2020 research and _A ECMWF
Rt

EuroHPC
innovation programme and United Kingdom, Germany, Italy, Luxembourg, Switzerland, Norway”.



https://www.google.com/url?q=https://github.com/ecmwf-lab/ai-models&sa=D&source=editors&ust=1709159374458111&usg=AOvVaw1oBT8Y2A-VI_YsUNWKwL1V
https://www.google.com/url?q=https://charts.ecmwf.int/&sa=D&source=editors&ust=1709159374458304&usg=AOvVaw3NfKldbyl5enuFawTzTYsu
https://www.google.com/url?q=https://thredds.met.no/&sa=D&source=editors&ust=1709159374458395&usg=AOvVaw0xn1Xdx-vw26tmn5ucnP1l

Extra slides



Post-processing of temperature
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