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What isHPC?



High Performance Computing is
computing with a powerful machine using

the available resources efficiently.

My interpretation.



Baseline

What kind of CPU does your computer have?
CPU generation, clock speed rate, number of cores, vector length

Howmuch memory does your computer have?
Amount of memory, type, links (GB andGB/s)

What kind of GPU do you have?
GPU generation, number of cores, power intake (TDP)

How fast is your network ?
Throughput, latency
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HPC
Node

Memory 1TB size, DDR4, 3200MHz rate, 190GiB/s
bandwidth

CPU 64 cores, 2.2GHz, 2× multi-threading, large caches,
advanced instructions, 220W TDP

GPU 108 cores, 1400MHz, 2048 bit vector size,
double-precision support, 400W TDP, no graphics

GPU VRAM 40GB (80GB also available), HBM2, 1.555GB/s
bandwidth
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HPC
Node

Usually, 2 CPUs sockets, each with 64 cores; use mostly as
one CPU with onememory
4 distinct GPUs , connected with each other (600GB/s)

4 network connections, each 200Gbit/s in each direction
(InfiniBand HDR-200)

Specs based on JURECA DC, JUWELS
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These are 96 nodes.
We have ≈4000.
At the moment󰉁



High Performance Computing is
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High Performance Computing is
computing with a powerful machine

using the available resources efficiently.

My interpretation.



Powerful Machines

Now Powerful nodes (large CPUs , accelerating GPUs , much memory )
Many nodes (well-connected through high-speed interconnect )

→ Beefed-up versions of commodity computers, with slight specializations; many

Past First computers: Supercomputers! Mainframemachines: Large installations with
most powerful hardware at the time
PC era: Even then, specialized computers, like vector machines, or many
low-speed CPUs (well-connected)
Recent history: x86, then PowerPC, then GPU accelerators, then specialized Arm
CPUs
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Supercomputers in Pictures

CDC 6600 supercomputer
Around 1965
First supercomputer
3MFLOP/s
See Wikipedia for more
Picture by Control Data Corporation
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Supercomputers in Pictures HPC performance measured in FLOP/s.
Floating-point (like 3.14) operations
per second

Example: Processor with 2GHz; 10
cores; per core: 2 multiplications and
2 additions (FMA) per cycle

2× 109 1/s 1/core ∗ 10 core∗
∗ (2 + 2) floating-point operation

=2 ∗ 109 ∗ 10 ∗ 4 fl-op/s

=80 ∗ 109 FLOP/s
=80GFLOP/s
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Supercomputers in Pictures

Cray-1 supercomputer
Around 1978
Very successful
160MFLOP/s
Probably pictured at NERSC
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Supercomputers in Pictures

Intel XP/S 140
supercomputer
Around 1994
3680 Intel i860 RISC
processors; large-scale
parallel system
143GFLOP/s
Picture by top500.org
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Supercomputers in Pictures

JUGENE
supercomputer
2008
294 912 PowerPC 450
cores; energy-efficient
800TFLOP/s
Picture by top500.org
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Supercomputers in Pictures

Summit
supercomputer
2018
27 000 GPUs hosted by
POWER9 CPUs; first #1
GPU supercomputer
200PFLOP/s
Picture by Oak Ridge
National Lab
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Supercomputers in Pictures

Fugaku supercomputer
2020
7 630 848 Arm A64FX
cores; #1
supercomputer at
release
537PFLOP/s
Picture by RIKEN
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JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46 + 10 nodes with 4 NVIDIA Tesla V100 cards (16GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)
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JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node
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936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Nov 2021:
#1 Europe
#8 World
#4* Top/Green500
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State of the Art

Current fastest supercomputer: Frontier at
Oak Ridge (USA) with 38 000 AMDMI250X
GPUs; 1.102EFLOP/s; also most
energy-efficient!

2023: Aurora at Argonne with > 60 000 Intel
Ponte Vecchio GPUs; > 2EFLOP/s
2024: El Capitan at Lawrence Livermore
with AMDMI300 GPUs; > 2EFLOP/s

󰉁 2024: JUPITER at JSC – 1EFLOP/s!
NVIDIA Hopper GPUs

Picture by OLCF at ORNL on Flickr
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GPUs
GPUs: Exascale Enablers
Processors efficient at applying same (/similar) instruction on
large set of data (image)
Over last 15 years, extended from rendering to variable
computing
Not good for every task, but great for some, which happen to
be computing with large amounts of similar data

Programmingmodel: SIMT, SIMD
⊗

SMT (vectors
⊗

threads)
JUWELS Booster thread 100% occupancy: 3744 GPUs× 108
SMs× 2048 threads/SM = 828 112 896 threads
JUPITER: > 10 000 000 000 threads
Important vendors: First NVIDIA, then AMD, then Intel

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
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Resource Utilization

1 Exploit all capabilities of processing entity (core)
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Resource Utilization

1

2

Exploit all capabilities of processing entity (core)

Parallelize to all processing entities of node
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Resource Utilization

1

2

3

Exploit all capabilities of processing entity (core)

Parallelize to all processing entities of node

Distribute to all nodes
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1 Exploit All Capabilities of Processing Entity
Modern CPUs: many advanced instructions, high clock rate, large caches, high memory
bandwidth
Use via tailored algorithms, specific functions (intrinsics), modern compilers, optimized
libraries

Example: Vectorization/SIMD
A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3
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→ 1 instruction

FMA SIMD Compiler!

Improve
throughput!
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Analysis/plot by Stepan Nassyr, 2022.
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2 Parallelize to All Processing Entities of Node
From core to cores

From CPU cores to GPU cores
Parallelization: Tasks work on portion of full problem using some
local sharedmemory; fine-grained split

CPU Mostly through operating system capacities
OS threads launched on cores
Easiest threading interface: OpenMP
#pragma omp parallel for
for (int i = 0; i < N; i++) y[i] = x[i] * 3.14 + a[i];

GPU Through dedicated programming environments
Mostly, explicit models
int i = threadIdx.x + blockIdx.x * blockDim.x;
y[i] = x[i] * 3.14 + a[i];

Also, higher-level models (OpenMP, OpenACC)
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3 Distribute to All Nodes

From node to nodes

Distribution: Tasks work on portion of full problem using
distributedmemory; coarse-grained split
Every task runs on own node with copy of program, defined
exchange functions
High-speed network important! GPUs directly attached to network
Classical programmingmodel: MPI
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Send(buffer, 10, MPI_INT, 1, 555, MPI_COMM_WORLD);
MPI_Allreduce(local_sum, global_sum, 1, MPI_FLOAT, MPI_SUM,

MPI_COMM_WORLD);↪→
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The Gateway Heroes of HPC
Compilers Translate high-level code to low-level machine code, with general and very

architecture-specific optimizations

Frameworks Offer pre-programmed function primitives to build a program upon

Libraries Back-end, low-level functions, usually optimized extensively, sometimes by
vendors themselves

Compilers
CPU GCC, LLVM, Intel, Cray
GPU + NVIDIA CUDA, NVHPC,

AMD
Long history,
constantly evolving

Frameworks
MPI OpenMPI, MPICH

Threads pthreads,
OpenMP

GPU CUDA, HIP, SYCL,
pSTL, Kokkos

Libraries
CPU MKL, BLIS, FFTW
GPU cuBLAS, rocBLAS,

cuDNN
→ TensorFlow, PyTorch,

ELPA
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High Performance Computing is
computing with a powerful machine

:::::::::::
using

::::::::
the

::::::::::::::::::::
available

:::::::::::::::::::::
resources

::::::::::::::::::::::
efficiently.

My interpretation.
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Conclusion
HPC is intensive computing with largest machines
Sometimes like Formula 1, sometimes like a tanker
Sophisticated hardware is underlying everything, delivering up to
1.1EFLOP/s
Advanced software holds everything together and enables science at the
frontiers

, like
Plasma physics simulations
Drug discovery
Material design
Weather and climate modelling
Precise Artificial Intelligence

We are hiring!
go.fzj.de/jsc-jobs
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License

This slide deck is published under the following license:
CC BY-SA 4.0
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