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5 Users expect high resolution forecasts
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1 km x 1 km

Users expect high resolution forecasts
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● New forecasts issued every hour as new observations become available

Users expect up-to-date forecasts

Observations

Forecasts



8 Predictors
● High resolution NWP ensemble (2.5 km)

● Hourly output for 59 hours

● Predictors:
○ 2m temperature (ensemble control)
○ 2m temperature (ensemble 10%)
○ 2 temperature (ensemble 90%)
○ 1h precipitation accumulation
○ Cloud cover
○ 10m wind (x-component)
○ 10m wind (y-component)

● Metadata variables:
○ Model altitude
○ Model land area fraction
○ “Real” altitude (1x1 km)
○ “Real” land area fraction (1x1 km)
○ Model x-coordinate
○ Model y-coordinate



9 Target data

● Challenge to assemble an accurate target at high 

resolution

● Conventional observation networks are too 

sparse (at least in the Nordics)

● Citizen observations are an emerging data source 

(50-100x  increase compared to SYNOP network)

● Target field based on:

○ Citizen observations

○ Early lead times (3-9h) from NWP

○ Combined using optimal interpolation (OI)
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● Target fields for the 24h leading up to 

prediction also used as input predictors

● Allows us to keep forecasts up to date with 

recent observations

● NWP bias (target - NWP) used as predictor

Gridded truths as input predictors

Example bias field

Temperature decreased by 3°C

Temperature increased by 3°C
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Input data (6 terabytes)

● 1x1 km downscaled NWP and recent biases
● 59 x 2321 x 1796 x 17
● 700 samples (2 years)

Output

● 1x1 km temperature forecasts
● 59 x 2321 x 1796 x 3 (10, 50, 90% quantile levels)

Target data

● 1x1 km gridded truth
● 59 x 2321 x 1796

Prediction problem
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● Quantile scoring function is used to evaluate quantile forecasts (10, 50, 90% )

Loss function

Quantile score

Forecast error (y - q)
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Example for quantile level = 0.9
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14 U-Net
● 2D U-Net, all leadtimes trained together (leadtime added as a predictor)

● 1,314,019 trainable parameters

6 levels

Leaky ReLU

Average 
pooling

512x512 
patches



15 U-Net
● 2D U-Net, all leadtimes trained together (leadtime added as a predictor)

● 1,314,019 trainable parameters

● Trained on 4 NVIDIA A-100 GPUs, 2x24 cores AMD EPYC 7402, 512GB RAM

● Extensive optimization of processing performance and memory footprint
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● We needed a data loader that:
○ Streames data from disk (6TB too large for memory)

○ Doesn't cause an I/O bottleneck

○ Can read data as we have them stored on our systems (i.e. reusable in other applications)

○ Allows loading options to be easily changed

Optimizing the data loader
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Single threaded

Each step run in parallel

48 threads split across steps
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● 1 year training period, 1 year testing period

● Bias variables are important contributors to overall skill of forecast

● Precip/winds/clouds also have a (small) positive effect

Verification

Air temperature (ensemble control)
Air temperature (ensemble 10%)
Air temperature (ensemble 90%)
Altitude (model and “real”)
Bias yesterday
Bias right now
Land area fraction (model and “real”)
Precipitation
Winds
Clouds
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● 1 year training period, 1 year testing period

● Bias variables are important contributors to overall skill of forecast

● Precip/winds/clouds also have a (small) positive effect

● 10 and 90% quantiles are much more reliable

Verification
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● Other properties not captured by the loss function:
○ Daily min/max

○ Sharp temporal changes

○ Spatial consistency (users comparing different locations)

● So far, these metrics also look promising

Verification

Daytime max
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● The MAELSTROM project has contributed to:
○ Development of an ML solution for forecasting temperature suitable for the general public

○ Optimization of the training pipeline by exploiting the available hardware

○ Development of a high-resolution benchmarking dataset for testing new ML methods

● Links:
○ Forecast site: www.yr.no

○ Data access via climetlab: https://github.com/metno/maelstrom-yr

○ Jupyter notebooks: https://gitlab.jsc.fz-juelich.de/esde/training/maelstrom_bootcamp (AP1)

○ Contact: Thomas Nipen (thomasn@met.no)

Summary

This presentation reflects the views only of the author, and the European High-Performance Computing Joint Undertaking or Commission cannot be 
held responsible for any use which may be made of the information contained therein.

http://www.yr.no
https://github.com/metno/maelstrom-yr
https://gitlab.jsc.fz-juelich.de/esde/training/maelstrom_bootcamp
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● Quantile scoring function is used to evaluate quantile forecasts (10, 50, 90% )

● Convolve the forecast error with the target uncertainty

● Developed a computationally efficient approximation

Loss function

Quantile score

Quantile score (uncertain target)

Forecast error (y - q)
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● Improvements also found in 

U-Net in MAELSTROM 

application 5

Average pooling
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● Standard ReLU activation disabled the layers in the U-Net due to dead ReLU nodes.

● Discovered through visualizing the tensors as they pass through the network

Leaky ReLU

Input layer

Level 6



27 Verification

● 10 and 90% quantiles are much 

more reliable

● Still, reliability has regional patterns 

suggesting room for improvements


