
Radiative Transfer Emulation: Results So Far 
(and why we should move on to 3D)

MAELSTROM dissemination workshop 2023

Peter Ukkonen 
Danish Meteorological Institute
peterukk@gmail.com

With help from Matthew Chantry 
(ECMWF)



Outline

1. Introduction 

2. A recurrent neural network approach for emulating radiative transfer 

3. Optimizing physical radiation schemes

4. Performance: state-of-the-art physical scheme on CPU vs ML on GPU

5. 3D considerations 



Maxwell’s equations in terms
of fields E(x,t), B(x,t)

3D radiative transfer in terms of 
monochromatic radiances I (x,Ω,𝜈)

Weather and climate models: 1D radiative 
transfer in terms of two monochromatic 
fluxes F↓(z, 𝜈), F↑(z, 𝜈)

Radiative transfer in the atmosphere is well-understood 
but approximated due to computational constraints:

● group together spectral frequencies
● atmosphere is horizontally homogenous within a grid 

column (“plane-parallel”)
● consider radiation only in two directions, up and 

down (“two-stream”)

Radiation in Earth system models: the art of 
approximation



Coarse-res 
(~460 km)

Low-res 
(~170 km)

Radiation has historically been a very 
expensive component of Earth system 
models, which has been the motivation for 
emulation studies

However, as model resolution increases 
radiation can be called more infrequently 
(relative to model time step). IFS 
computes radiation every hour on a 
coarser grid: only a few % of runtime

Nonetheless, efficient computations would 
allow fewer approximations / more realism 
(e.g. more streams than 2!)

Cotronei & Slavig, GMD 2020: 
Single-precision arithmetic in ECHAM 
radiation reduces runtime and energy 
consumption.



Key question: can we “improve” the accuracy/efficiency trade-off of 
radiation schemes by using ML?

● Longstanding (> 20 years) efforts based on dense neural nets 
have given large speed-ups, but sacrificed accuracy and 
generalization

● Some studies have used outdated and slow radiation codes 
as reference

Even if we don’t achieve this goal, radiation provides a useful 
testbed for physics emulation:

● Well-understood, benchmark solutions exist
● Easy-to-use stand-alone radiation codes: ESM simulations 

not always necessary
● Non-linear (like other sub-grid physics)
● Non-local (assumed 1D, like other sub-grid physics)



Radiative transfer emulation using dense networks (MLPs)



Inputs are vertical profiles of pressure, 
temperature, gases, cloud water and ice, 
and a few scalar variables such as 
incident solar radiation (shortwave only)

Outputs are vertical profiles of heating 
rates (HR) = dT/dt 

Radiation codes compute HR from 
upward and downward fluxes, but this 
approach gives noisy heating rates with 
dense NNs, so typically the outputs are 
HR profile + surface and 
top-of-atmosphere flux

→ less noisy HRs but breaks energy 
conservation

Radiative transfer emulation using dense networks (MLPs)



Radiative transfer emulation using dense networks (MLPs)



Comparing the two figures, what 
problem does the model have?

Radiative transfer emulation using dense networks (MLPs)



● Mismatch in the direction of 
information flow between the 
model and the process! 

● Dense nets lack the connections 
to directly propagate information 
up/down the column (non-locality)

Radiative transfer emulation using dense networks (MLPs)



Recurrent neural networks for radiation (the solution?)

RNNs are usually applied to temporal 
sequences, here they iterate through a 
vertical column, updating a hidden memory 
when processing each vertical level



Recurrent neural networks for radiation (the solution?)

Characteristics of atmospheric radiative transfer 
respected by RNNs:

● Correct directionality, however radiation flows both 
upward and downward, so we need bidirectional 
RNNs (BiRNN)

● Sequential from one level to the next – unlike DNN, 
which (unphysically) connects the top directly to the 
surface

● Invariable physical laws by height – unlike DNN, 
which (unphysically) uses level-specific weights 

RNNs are usually applied to temporal 
sequences, here they iterate through a 
vertical column, updating a hidden memory 
when processing each vertical level



RNNs for shortwave radiation (JAMES 2022)

● Compare different ways of emulating the RTE+RRTMGP scheme

● To ensure energy conservation, the NNs predict full flux profiles (like physical radiation 
schemes), from which heating rate (HR) is physically derived:   

          

HR =

● A hybrid loss function to reduce HR errors:

● For shortwave it’s helpful to normalize all the fluxes by the incoming solar radiation



RNNs for shortwave radiation (JAMES 2022)

2-layer deep MLP, 128+128 neurons:
100,000 parameters
RMSE 1.35 K / day
~50x speedup

Bidirectional GRU, 16+16 neurons:
5600 parameters
RMSE 0.16 K / day 
~5x speedup

MLPs for predicting optical properties: 
RMSE 0.05 K / day
4200 parameters
~1.3x speedup (but better generalization, 
interpretability and flexibility)

! speed-ups are on CPU and relative to a modern but 
somewhat expensive radiation scheme with high spectral 
resolution (RTE+RRTMGP, 224 SW g-points). 
On GPU, RNN was ~7x slower than MLP



We can emulate a two-stream radiation 
scheme using a bidirectional RNN that maps 
(nx, nlay) inputs to (2, nlay+1) outputs , i.e. 
down- and upwelling fluxes at layer interfaces

Surface information can be used to initialize 
the first (upward) RNN, and concatenated with 
its nlay outputs to get a sequence length of 
nlay+1. Mimics the computation of albedo in 
physical radiation code

The second RNN starts at top-of-atmosphere 
and iterates downwards computing the fluxes, 
just like in ecRad

Predicting nlay+1 up-and-downwelling fluxes from layer-wise 
inputs using bidirectional RNNs



Prognostic evaluation of radiation emulators in the IFS

● RNNs were trained on the inputs and outputs of ecRad (TripleClouds solver) using a 
hybrid loss incorporating heating rate.

● Training - 2020, Evaluation – 2021

● IFS implementation / online inference by using Infero, a lower-level ML library 
developed at ECMWF that supports different back-ends  

               github.com/ecmwf-projects/infero  

Work mainly by Matthew Chantry (ECMWF)

http://github.com/ecmwf-projects/infero


Offline errors, 64-neuron longwave LSTM 
(~60k parameters)

RNNs emulating ecRad, tested in the IFS



RNNs emulating ecRad, tested in the IFS
Offline errors, 64-neuron shortwave LSTM 

(~60k parameters)



RNN vs TripleClouds

Depicted: change in 
temperature RMSE 
using a suite of JJA IFS 
experiments at ~30km 
resolution

Red = degradation 

Blue = improvement



RNN vs TripleClouds

Depicted: change in 
temperature RMSE 
using a suite of JJA IFS 
experiments at ~30km 
resolution

Red = degradation 

Blue = improvement

Using emulators has a 
statistically small impact 
on forecasts: similar to 
changing the radiative 
transfer solver to 
McICA (which is similar 
to TripleClouds but 
treats sub-grid cloud 
variability stochastically )

McICA vs TripleClouds



Can machine learning “improve” the trade-off 
between accuracy and efficiency for radiation?

Answer: no free lunch with ML. Recurrent NNs 
can emulate a radiation scheme very closely but 
are also slower than (quite inaccurate) feed-forward 
networks

Before we do a performance comparison, let’s 
revisit where physical codes spend computations 
and how we can optimize them!  



The ecRad scheme

ecRad is a modular, highly configurable radiation scheme 
developed at ECMWF.

The gas optics module determines the spectral resolution 
and therefore the cost



The correlated-k method

106 - 107 points needed to numerically 
integrate the absorption spectrum line-by-line

102 - 103 ”g-points” needed to 
numerically integrate the cumulative 
probability functions

 

Divide into bands (or not) and reorder by 
absorption coefficient

 



If we want to go beyond two-streams, we 
need cost savings somewhere else

Recently it’s been shown that we can 
reasonably reduce spectral resolution:

While there is a positive correlation with 
accuracy, improved methods allow similar 
accuracy with fewer quadrature points 
(ecCKD, Hogan & Matricardi 2022) 

→3-8x saving in floating point operations 
compared to operational codes!



If we want to go beyond two-streams, we 
need cost savings somewhere else

Recently it’s been shown that we can 
reasonably reduce spectral resolution:

While there is a positive correlation with 
accuracy, improved methods allow similar 
accuracy with fewer quadrature points 
(ecCKD, Hogan & Matricardi 2022) 

→3-8x saving in floating point operations 
compared to operational codes!

...does not result in as big a runtime 
reduction due to short vectorized loops 
inhibiting vectorization (but wait!)



Improving the efficiency of radiation schemes

For radiation, the motivation for exploring the use of emulators has always been to improve 
speed, but there are other ways to achieve this

Ukkonen and Hogan (in review): How far can we push efficiency of traditional radiation 
schemes if we combine

1. Spectrally reduced correlated-k gas optics models

with

2. Code optimization
a. Higher-level refactoring to expose more parallelism - important at reduced 

spectral resolution
b. Low-level optimization (avoid double precision, fusing kernels, loop unrolling etc)

https://doi.org/10.22541/essoar.168298700.07329865/v1

https://doi.org/10.22541/essoar.168298700.07329865/v1


A new state-of-the-art in speed/accuracy by combining spectral and 
code optimization

Spectral reduction yields ~4x speedup and code optimization an additional ~4x
TripleClouds + ecCKD: similar or better accuracy than operational schemes and 13X faster
SPARTACUS + ecCKD: accounts for previously ignored 3D cloud radiative effects, 2.6X faster 
than operational scheme



Performance comparison: RNN-based emulators on GPU vs 
optimized TripleClouds on CPU

bi-LSTM, 64 neurons
Offline setup with little 
overhead, ONNX runtime
Very large batch size 
(40000 columns)

1x NVIDIA A100 40 GB 
Released: May 2020
MSRP: ?
Price: $6800 - $10000
TDP: 400W

Time to solution for 400,000 columns (lower is better)



Performance comparison: RNN-based emulators on GPU vs 
optimized TripleClouds on CPU

bi-LSTM, 64 neurons
Offline setup with little 
overhead, ONNX runtime
Very large batch size 
(40000 columns)

1x NVIDIA A100 40 GB 
Released: May 2020
MSRP: ?
Price: $6800 - $10000
TDP: 400W

Opt. TripleClouds + ecCKD
GCC 9.3, -O3
128 cores = threads
OpenMP loop batch size: 8 
columns

2x AMD EPYC  7H12 
Released: September 2019
MSRP: ??
Price:  $7600 - $14000
TDP: 560W

Time to solution for 400,000 columns (lower is better)

Despite the emulation-friendly setup, optimized radiation code 
on CPU has almost double the throughput at 635 columns ms-1



Performance comparison: RNN-based emulators on GPU vs 
optimized TripleClouds on CPU

Energy to solution for 400,000 columns (lower is better)

Emulators on GPU do consume less power (but 
smaller batches would make it less efficient)

Opt. TripleClouds + ecCKD
GCC 9.3, -O3
128 cores = threads
OpenMP loop batch size: 8 
columns

2x AMD EPYC  7H12 
Released: September 2019
MSRP: ??
Price:  $7600 - $14000
TDP: 560W

bi-LSTM, 64 neurons
Offline setup with little 
overhead, ONNX runtime
Very large batch size 
(40000 columns)

1x NVIDIA A100 40 GB 
Released: May 2020
MSRP: ?
Price: $6800 - $10000
TDP: 400W



• As simulations are being performed at ever higher 
resolution, the relative cost of radiation decreases

• In the IFS global weather model, radiation is 
already only a few % of total runtime (but computed 
on a coarser grid)

• Combine this with new reduced k-distributions and 
optimization, radiation is arguably not that 
expensive anymore - is emulation of operational 
parameterizations addressing a real problem?

• Even if it is, it looks like emulators are not faster 
than optimized two-stream code, even when 
using GPU

Coarse-res 
GCM (~460 
km)

Low-res (170 
km)

Moving beyond 1D treatment of radiation



Where are we at? 

As shown earlier, SPARTACUS (Hogan et al, JAMES 2016) is now affordable for weather 
and climate applications. It computes sub-grid cloud 3D radiative effects (radiative 
flows from cloud sides) by adding extra terms to the two-stream equations

SPARTACUS still operates on 1D columns, so NOT a 3D solver!

Moving beyond 1D treatment of radiation



SPARTACUS impact in coupled year-long IFS simulations

3D effects substantially 
warm the troposphere, 
especially in midlatitudes

Caveats:

- SPARTACUS currently 
overestimates warming 
effect in the longwave
- Simulations too short to 
capture ocean response



SPARTACUS can be emulated with similar accuracy as TripleClouds,
without increasing RNN complexity



SPARTACUS can be emulated with similar accuracy as TripleClouds,
without increasing RNN complexity

Testing accuracy, fluxes: R2 0.996
Testing accuracy, 3D signal R2 (fluxSPART- fluxTripleClouds, fluxNN- fluxTripleClouds): 0.998

Mean 3D signal, true: 0.233
Mean 3D signal, pred. 0.261

Optimized SPARTACUS is ~5x slower than TripleClouds, so in the optimal case (with 
large batches and little communication or other overhead) RNNs emulators on GPU 
could be faster, and definitely more energy efficient



Surface net SW flux, SPARTACUS

Surface net SW flux, RNN

00 UTC 31.1.2019 



3D effect (difference in surface net 
flux, SPARTACUS - TripleClouds) 

3D effect (difference in surface net 
flux, RNN - TripleClouds) 

00 UTC 31.1.2019 



Klinger et al, 2017. Effects of 3-D 
thermal radiation on the 
development of a shallow 
cumulus cloud field 



← SPARTACUS? 

Klinger et al, 2017. Effects of 3-D 
thermal radiation on the 
development of a shallow 
cumulus cloud field 



← SPARTACUS?

← What if we want this?

Klinger et al, 2017. Effects of 3-D 
thermal radiation on the 
development of a shallow 
cumulus cloud field 



The TenStream solver (Jakub and Mayer, 2015) 

Fabian Jakub and Bernhard Mayer, 2015. A three-dimensional parallel radiative transfer model for 
atmospheric heating rates for use in cloud resolving models – The TenStream solver (JQSRT)

3D radiative transfer solver which is 20-70x faster than Monte Carlo; 20-50x slower than 
two-stream 



Yes, in that RNNs can be used to emulate SPARTACUS (1D solver 
with sub-grid 3D effects) with similar accuracy as TripleClouds 

Similarly, RNNs could probably skillfully emulate a more expensive 
4-stream 1D-solver

Maybe?, for emulating a full 3D solver - no published results so 
difficult to say. E.g. transformers would have bad parameter scaling 
given high dimensionality (Ny*Nx*Ny ~ 100*1000*1000)

Given that local 3D radiative effects have been shown to change 
cloud circulation, we should try, but perhaps a hybrid approach would 
work better -

Moving beyond 1D treatment of radiation:
Could emulating more complex solvers be more useful?



Idea: use ML to “downscale” SPARTACUS fluxes on a coarse grid 
(statistical, domain-average 3D effects) to “resolved” 3D on a finer 
grid (with shadows in correct places)

1. Train NN on TenStream fluxes normalized by the domain-mean 
flux, with an output softmax layer so that predictions e.g. at a 
given vertical level sum to 1

2. Run SPARTACUS on coarsened grid (20 km+), computing cloud 
variability inputs from fine grid (10m-1km scale) similar to that 
used in training

3. Run NN using fine grid cloud field and multiply the predictions 
with the SPARTACUS flux and N so that the domain average flux 
is conserved

+ The NN would only downscale/redistribute fluxes, accuracy need 
not be high. Could adapt ML approaches from other fields

A possible hybrid approach for 3D radiative transfer



RNNs can emulate 1D schemes closely and are quite fast on GPU - but if we compare 
against state-of-the-art radiation code on CPU (optimized TripleClouds+ecCKD), it’s 
actually faster (offline - online speed-up even more unlikely) 

Given small or negative speed gains (assuming ML architecture which is accurate enough 
for global NWP), we should probably move from emulation from 1D schemes! Been 
studied more than 20 years and still not used operationally.

Also worth noting for climate applications: crucial metrics such as radiative forcing have not 
been evaluated in any full-emulation study!

Instead, we should move towards the emulation of more sophisticated schemes (e.g. 
4-streams, SPARTACUS, 3D solver): easier to get a substantial speed-up; prospect to 
improve realism compared to current models

Conclusions



Thanks for listening!

Any questions?


