
Physics-Constrained
Deep Learning for
Downscaling and
Emulation

MAELSTROM dissemination workshop

Paula Harder,
PhD Candidate at RPTU

In collaboration with

Motivation

Accelerating climate modeling would be
beneficial, we could

1. Increase both resolution of prediction
and the time scale we are predicting for

2. Stay at same resolution while obtaining
results faster, saving energy, making
climate simulation more accessible

There are two common ways for machine
learning (ML) to help

1. Downscaling: Increasing traditional
models predictions resolution as a
post-processing tool

2. Emulation: replacing expensive climate
model parts with faster ML surrogates

Problem with deep learning approaches
Physical laws/constraints can be violated, e.g.
negative masses predicted

Need for strategies for DL methods to obey
those constraints

Physics-Constrained Deep
Learning for Climate

Downscaling
Paula Harder, Alex Hernandez-Garcia, Venkatesh Ramesh, Qidong Yang,
Prasanna Sattigeri, Campbell Watson, Daniela Szwarcman, David Rolnick

Goal
Increasing climate data’s resolution

 Low-resolution (LR) input

Goal
Increasing climate data’s resolution

 High-resolution (HR) targetLow-resolution (LR) input

Goal
Increasing climate data’s resolution …

while obeying laws of physics

 HR water
massLR water

mass

Enforcing Constraints
for Downscaling

Physics constraints
Predicted quantity is water mass

Want to enforce conservation of mass between low-res input and
super-res prediction

Low-res water mass Super-res water mass

xj

y1

y2 y3

Physics constraints
Want to enforce mass conservation between low-res input and
super-res prediction

Low-res water mass Super-res water mass

xj

y1

y2 y3

Soft-constraining
Want to enforce mass conservation between low-res input and
super-res prediction

First idea: Add regularization term to the loss function

Soft-constraining
First idea: Add regularization term to the loss function

Problems:
- No guarantee
- Need to optimize mu
- Can have accuracy-constraints trade-off

Hard constraining
Want to enforce mass conservation/consistency between low-res input
and super-res prediction

NN

Hard constraining
Want to enforce mass conservation between low-res input and
super-res prediction

NN

C
on

st
ra

in
in

g

Additive Constraining (AddCL)

AddCL guarantees conservation of mass

Additive Constraining (AddCL)

AddCL guarantees conservation of mass

Multiplicative Constraining (MultCL)

MultCL guarantees conservation of mass

Softmax Constraining (SmCL)

SmCL guarantees conservation of mass and positivity

More general formulation
Generalized formulation

More general formulation
Generalized formulation

Data

Data - overview

ERA5 (ECMWF reanalysis data) - Water content, synthetic low-res
- Different upsampling factors, multi- and single-time-step data

WRF (Weather and Research Forecast) - Temperature, two different
simulations

Data - ERA5

a) One time step is super-resolved
spatially at once

b) 3 time-steps are super-resolved
simultaneously

c) Super-resolve both spatially and
temporally (frame interpolation)

Data - ERA5 Different Upsampling Factors

Data - WRF
● Operational weather forecast
● Lake George in New York
● Hourly
● 2017-2020
● LR not created by downsampling HR, but different simulation!
● HR: 3 km resolution, LR 9 km resolution

Experiments

Architectures

We look at different neural architectures

● Convolutional neural network (CNN)
● Generative adversarial neural network (GAN)
● ConvRNN (mix of CNN and recurrent NN)
● FlowConvRNN (mix of CNN/RNN/optical flow)
● New work: Fourier Neural Operator (FNO) for arbitrary

resolution downscaling

Results

Results - Loss Curve

Constraining makes
learning curve smoother!

Results - CNN water content 4x Visual artifacts in the
unconstrained CNN

Artifacts increased
using
soft-constraining

Artifacts removed with
hard-constraining

Results - CNN water content 4x

Constraining unconstrained soft constrained AddCL MultCL SmCL

RMSE 0.657 0.801 0.580 0.606 0.582

Mass
violation

0.058 0.023 0.000 0.000 0.000

#neg pixels
per Mil pixels

396 95,300 234 0 0

Results -
different
upsampling
factors

Results -
different
upsampling
factors

Results - different upsampling factors

Factor unconstrai
ned

Hard-cons
trained
(SmCL)

2 x 0.251 0.215

4 x 0.657 0.582

8 x 1.358 1.268

16 x 2.450 2.368

RMSE shown in table

Results - GAN water content 4x

Model unconstrained Hard-constr
ained
(SmCL)

RMSE 0.628 0.603

MAE 0.313 0.310

SSIM 99.44 99.46

Results - Spatial-temporal super-resolution

Model unconstrained Hard-constr
ained
(SmCL)

RMSE 0.673 0.514

MAE 0.352 0.276

SSIM 99.40 99.62

Results - WRF data

Results - WRF data

Model unconstrained Hard-constrained
(SmCL)

RMSE 0.952 0.950

MAE 0.618 0.592

SSIM 94.92 95.24

More Constrained
Downscaling Work

Fourier Neural Operator for Arbitrary Resolution
Downscaling

Reference: Yang et al, Fourier Neural Operators for Arbitrary Resolution Climate Data Downscaling,
https://arxiv.org/pdf/2305.14452.pdf

Can train on eg 2x downscaling
and apply for 4x
Learns a mapping in function
space

Multi-variable constrained downscaling

Gonzalez-Abad et al, Multi-variable Hard Physical Constraints for Climate Model Downscaling, https://arxiv.org/pdf/2308.01868.pdf

Multi-variable constrained downscaling

Gonzalez-Abad et al, Multi-variable Hard Physical Constraints for Climate Model Downscaling, https://arxiv.org/pdf/2308.01868.pdf

● Enforces constraints in a
perfect prognosis setup

● Tmax >= Tmin
● Violations increase with time

Physics-Constrained Deep
Learning for Aerosol

Microphysics Emulation
Paula Harder, Duncan Watson-Parris, Philip Stier,

Nico Gauger, Janis Keuper, Phillip Weiss

Network architecture
Neural network with 2 hidden layers, 256 nodes per hidden layer, ReLU
activation

Inputs:
Temperature, RH,
pressure, etc
Aerosol masses
Aerosol number

Outputs:
Change in
aerosol masses
Change in
aerosol numbers
Water content

M7: An efficient size-resolved aerosol microphyiscs
module for large-scale aerosol transport models,
Vignatti et al. 2004

Idea: Replace M7
with NN

Constraining

Our Constraints
Mass conservation
Let S= SO4,DU,OC,BC be the set of aerosol species. For every s∈S let Is be the
indices of our output y corresponding to value of that species.
Mass conservation is given by

∑i∈Is yi=0

Soft constraining: Add loss term ||∑i∈Is yi ||²

Hard constraining (completion): Choose ic∈Is and set

Our Constraints

Mass positivity
All predicted masses have to be positive. For our input x (masses at
time 0) and our output y (change in mass), the constraint is

 yi+xi≥0

Soft constraining: Add loss term ||ReLU(-(yi+xi))||²

Hard constraining: Add correction layer yi=ReLU(yi+xi)-xi

Results

Results - Loss Curve

Results - Mass conservation

Soft constraining with mass
loss term decreases mass
violation of each aerosol
species, but accuracy is
decreased too

Hard constraining with
completion procedure
guarantees mass
conservation, but also
decreases accuracy

Model Base NN NN + mass
loss
(soft-constr.)

NN +
completion
(hard-constr.)

R² 0.763 0.730 0.738

Overall
Mass
Violation

0.00037 0.00014 0

Results - Positivity
Soft constraining with positivity loss decreases negative fraction and
negative mean, but also accuracy

Hard constraining with correction procedure guarantees no negative
values and also increases accuracy

Model NN Base NN + Positivity
Loss
(soft-constr.)

NN + Correction
(hard-constr.)

R² 0.763 0.709 0.771

Negative
Fraction

0.134 0.0894 0

Negative Mean 0.00151 0.000081 0

Offline Results - Runtimes

Whole point of NN is to be faster

- > Very large speed-up using a pure GPU setting
- > Significant speed-up transferring data from CPU and back
- > Small speed-up in a single CPU setup

Comparing NN in PyTorch vs. orig. M7 in Fortran

Integration in ICON

[1] https://github.com/scientific-computing/FKB

Using Fortran-Keras-Bridge (FKB) [1] library to integrate NN in ICON-HAM

2. Convert to
Keras/Tenso
rflow h5 file
format

1.
Development
+ training in
PyTorch
Output:
Weights file

3. Using FKB
library to
convert h5
file to txt file

4. Replacing
original M7
function
call in ICON
with NN
version

Integration in ICON

Simulation easily unstable, if out-of-distribution samples appear - > important to include
samples from all year, all times of day, all areas, all vertical levels in training data

First simulation with baseline NN now are running stably for couple month

Things that helped for stable run
● Retrain with all data (including training,validation and testing) to achieve stable

runs
● Bigger NN

Take away

Simple hard-constraints can be incorporated into NNs to ensure
some constraints, e.g. conservation of mass

Hard-constraints can improve ML performance for e.g. for
downscaling

Soft-constraints didn’t work well in our cases, usually trade-off
between accuracy and constraint satisfaction

Work in progress & Outlook

● Constraining Methodologies
○ Application cases with non-linear constraints
○ Dealing with non-linear constraints
○ Improving soft-constraining through scheduling
○ Combining correction and completion

● Downscaling
○ Application to new architectures, such as Transformers, Normalizing Flows and

Diffusion-based models
○ Application in a two-step approach, including bias correction

● Aerosol Emulation
○ Pruning methods to make NN emulator faster & smaller
○ Integration into GPU ICON version

Thanks for your
attention!

