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Motivation

Accelerating climate modeling would be 
beneficial, we could

1. Increase both resolution of prediction 
and the time scale we are predicting for

2. Stay at same resolution while obtaining 
results faster, saving energy, making 
climate simulation more accessible 

There are two common ways for machine 
learning (ML) to help

1. Downscaling: Increasing traditional 
models predictions resolution as a 
post-processing tool

2. Emulation: replacing expensive climate 
model parts with faster ML surrogates

Problem with deep learning approaches 
Physical laws/constraints can be violated, e.g. 
negative masses predicted

Need for strategies for DL methods to obey 
those constraints



Physics-Constrained Deep 
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Downscaling
Paula Harder, Alex Hernandez-Garcia, Venkatesh Ramesh, Qidong Yang, 
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Goal
Increasing climate data’s resolution

 Low-resolution (LR) input
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Goal
Increasing climate data’s resolution …

while obeying laws of physics

 HR water 
massLR water 
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Enforcing Constraints
for Downscaling



Physics constraints
Predicted quantity is water mass

Want to enforce conservation of mass between low-res input and 
super-res prediction

Low-res water mass Super-res water mass
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Soft-constraining
Want to enforce mass conservation between low-res input and 
super-res prediction

First idea: Add regularization term to the loss function



Soft-constraining
First idea: Add regularization term to the loss function

Problems:
- No guarantee
- Need to optimize mu
- Can have accuracy-constraints trade-off



Hard constraining
Want to enforce mass conservation/consistency between low-res input 
and super-res prediction

NN
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Additive Constraining (AddCL)

AddCL guarantees conservation of mass 



Additive Constraining (AddCL)

AddCL guarantees conservation of mass 



Multiplicative Constraining (MultCL)

MultCL guarantees conservation of mass 



Softmax Constraining (SmCL)

SmCL guarantees conservation of mass and positivity



More general formulation
Generalized formulation



More general formulation
Generalized formulation



Data



Data - overview

ERA5 (ECMWF reanalysis data) - Water content, synthetic low-res
- Different upsampling factors, multi- and single-time-step data

WRF (Weather and Research Forecast) - Temperature, two different 
simulations



Data - ERA5

a) One time step is super-resolved 
spatially at once

b) 3 time-steps are super-resolved 
simultaneously

c) Super-resolve both spatially and 
temporally (frame interpolation)



Data - ERA5 Different Upsampling Factors



Data - WRF
● Operational weather forecast
● Lake George in New York
● Hourly
● 2017-2020
● LR not created by downsampling HR, but different simulation!
● HR: 3 km resolution, LR 9 km resolution



Experiments



Architectures

We look at different neural architectures

● Convolutional neural network (CNN)
● Generative adversarial neural network (GAN)
● ConvRNN (mix of CNN and recurrent NN)
● FlowConvRNN (mix of CNN/RNN/optical flow)
● New work: Fourier Neural Operator (FNO) for arbitrary 

resolution downscaling



Results



Results - Loss Curve

Constraining makes 
learning curve smoother!



Results - CNN water content 4x Visual artifacts in the 
unconstrained CNN

Artifacts increased 
using 
soft-constraining

Artifacts removed with 
hard-constraining



Results - CNN water content 4x

Constraining unconstrained soft constrained AddCL MultCL SmCL

RMSE 0.657 0.801 0.580 0.606 0.582

Mass 
violation

0.058 0.023 0.000 0.000 0.000

#neg pixels
per Mil pixels

396 95,300 234 0 0



Results - 
different 
upsampling 
factors  
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Results - different upsampling factors  

Factor unconstrai
ned

Hard-cons
trained 
(SmCL)

2 x 0.251 0.215

4 x 0.657 0.582

8 x 1.358 1.268

16 x 2.450 2.368

RMSE shown in table



Results - GAN water content 4x

Model unconstrained Hard-constr
ained 
(SmCL)

RMSE 0.628 0.603

MAE 0.313 0.310

SSIM 99.44 99.46



Results - Spatial-temporal super-resolution

Model unconstrained Hard-constr
ained 
(SmCL)

RMSE 0.673 0.514

MAE 0.352 0.276

SSIM 99.40 99.62



Results - WRF data  



Results - WRF data  

Model unconstrained Hard-constrained 
(SmCL)

RMSE 0.952 0.950

MAE 0.618 0.592

SSIM 94.92 95.24



More Constrained 
Downscaling Work



Fourier Neural Operator for Arbitrary Resolution 
Downscaling

Reference: Yang et al, Fourier Neural Operators for Arbitrary Resolution Climate Data Downscaling, 
https://arxiv.org/pdf/2305.14452.pdf  

Can train on eg 2x downscaling 
and apply for 4x
Learns a mapping in function 
space



Multi-variable constrained downscaling

Gonzalez-Abad et al, Multi-variable Hard Physical Constraints for Climate Model Downscaling, https://arxiv.org/pdf/2308.01868.pdf



Multi-variable constrained downscaling

Gonzalez-Abad et al, Multi-variable Hard Physical Constraints for Climate Model Downscaling, https://arxiv.org/pdf/2308.01868.pdf

● Enforces constraints in a 
perfect prognosis setup

● Tmax >= Tmin
● Violations increase with time



Physics-Constrained Deep 
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Network architecture
Neural network with 2 hidden layers, 256 nodes per hidden layer, ReLU 
activation

Inputs:
Temperature, RH, 
pressure, etc
Aerosol masses
Aerosol number

Outputs:
Change in 
aerosol masses
Change in 
aerosol numbers
Water content

M7: An efficient size-resolved aerosol microphyiscs 
module for large-scale aerosol transport models, 
Vignatti et al. 2004

Idea: Replace M7 
with NN



Constraining



Our Constraints
Mass conservation
Let S=  SO4,DU,OC,BC   be the set of aerosol species. For every s∈S let Is be the 
indices of our output y corresponding to value of that species. 
Mass conservation is given by

∑i∈Is yi=0

Soft constraining: Add loss term ||∑i∈Is yi ||²

Hard constraining (completion): Choose ic∈Is and set 



Our Constraints

Mass positivity
All predicted masses have to be positive. For our input x (masses at 
time 0) and our output y (change in mass), the constraint is

 yi+xi≥0

Soft constraining: Add loss term ||ReLU(-(yi+xi))||²

Hard constraining: Add correction layer yi=ReLU(yi+xi)-xi



Results



Results - Loss Curve



Results - Mass conservation

Soft constraining with mass 
loss term decreases mass 
violation of each aerosol 
species, but accuracy is 
decreased too

Hard constraining with 
completion procedure 
guarantees mass 
conservation, but also 
decreases accuracy

Model Base NN NN + mass 
loss
(soft-constr.)

NN + 
completion 
(hard-constr.)

R² 0.763 0.730 0.738

Overall 
Mass 
Violation

0.00037 0.00014 0



Results - Positivity
Soft constraining with positivity loss decreases negative fraction and 
negative mean, but also accuracy

Hard constraining with correction procedure guarantees no negative 
values and also increases accuracy 

Model NN Base NN + Positivity 
Loss
(soft-constr.)

NN + Correction
(hard-constr.)

R² 0.763 0.709 0.771

Negative 
Fraction

0.134 0.0894 0

Negative Mean 0.00151 0.000081 0



Offline Results - Runtimes

Whole point of NN is to be faster

- > Very large speed-up using a pure GPU setting
- > Significant speed-up transferring data from CPU and back
- > Small speed-up in a single CPU setup

Comparing NN in PyTorch vs. orig. M7 in Fortran



Integration in ICON

[1] https://github.com/scientific-computing/FKB

Using Fortran-Keras-Bridge (FKB) [1] library to integrate NN in ICON-HAM

2. Convert to 
Keras/Tenso
rflow h5 file 
format

1. 
Development 
+ training in 
PyTorch
Output: 
Weights file

3. Using FKB 
library to 
convert h5 
file to txt file

4. Replacing 
original M7  
function 
call in ICON 
with NN 
version 



Integration in ICON

Simulation easily unstable, if out-of-distribution samples appear - > important to include 
samples from all year, all times of day, all areas, all vertical levels in training data

First simulation with baseline NN now are running stably for couple month

Things that helped for stable run
● Retrain with all data (including training,validation and testing) to achieve stable 

runs
● Bigger NN



Take away

Simple hard-constraints can be incorporated into NNs to ensure 
some constraints, e.g. conservation of mass

Hard-constraints can improve ML performance for e.g. for 
downscaling 

Soft-constraints didn’t work well in our cases, usually trade-off 
between accuracy and constraint satisfaction



Work in progress & Outlook

● Constraining Methodologies
○ Application cases with non-linear constraints
○ Dealing with non-linear constraints
○ Improving soft-constraining through scheduling
○ Combining correction and completion

● Downscaling 
○ Application to new architectures, such as Transformers, Normalizing Flows and 

Diffusion-based models
○ Application in a two-step approach, including bias correction

● Aerosol Emulation
○ Pruning methods to make NN emulator faster & smaller
○ Integration into GPU ICON version



Thanks for your 
attention!


