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Realistic weather and climate simulation is a computational grand challenge
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Figure adapted from: Schneider, T., Teixeira, J., Bretherton, C. et al.  “Climate goals and computing the future of clouds”. Nature Climate Change 7, 3–5 (2017)



Throughout history, ensemble size of weather and climate predictions has been 
limited.

Under computational constraints, ensemble size trades off against horizontal resolution



Exploding Data Volumes in High-Resolution Climate Prediction
"We can compute km-scale predictions, but can't effectively extract information content, let alone interact with it"

-- Prof. Dr. Bjorn Stevens.



EARTH-2: A highly interactive weather and climate information system
For serving society with next-gen weather and climate predictions.

80

comment

A digital twin of Earth for the green transition
For its green transition, the EU plans to fund the development of digital twins of Earth. For these twins to be more 
than big data atlases, they must create a qualitatively new Earth system simulation and observation capability 
using a methodological framework responsible for exceptional advances in numerical weather prediction.

Peter Bauer, Bjorn Stevens and Wilco Hazeleger

The European Union (EU) intends to 
become climate neutral by 2050, and 
the set of policies designed to bring 

about this green transition — the European 
Green Deal — was announced in December 
2019 (ref. 1). Accompanied by €1 trillion of 
planned investment, Green Deal policies aim 
to help the world’s second-largest economy 
sustainably produce energy, develop 
carbon-neutral fuels and advance circular 
products in energy-intensive industrial 
sectors with zero waste and zero pollution.

A key element of the Green Deal is its 
dependence on the ‘digital transformation’ 
— an openly accessible and interoperable 
European dataspace as a central hub 
for informed decision making. The EU 
identified two landmark actions to support 
the necessary information systems: 
GreenData4All2 and Destination Earth3. 
Whereas GreenData4All will develop the 
European approach to discover, manage and 
exploit geospatial information, Destination 
Earth aims to construct highly accurate 
models, or ‘digital twins’, of the Earth to 
monitor and predict environmental change 
and human impact in support of sustainable 
development. Aligned with the new Digital 
Europe funding programme4, Destination 
Earth is expected to start in 2021, and the first, 
high-priority digital twins serving extremes 
prediction and climate change adaptation will 
start production in 2023 (ref. 5).

The timing couldn’t be better. Advances 
in high-performance computing have 
reached a point that now make it possible 
to model the Earth system with much 
greater physical and spatial fidelity6. By 
combining this new class of models with 
advances from past investments in Earth 
system prediction and observations7, 
digital twins promise to close substantial 
and recalcitrant gaps in our ability to 
look into the future. These gaps presently 
hinder reliable projection of climate change 
signals at regional scales8,9, undermining 
confidence in assessments of the 
vulnerability of human welfare and capital 
to present and future weather extremes and 
catastrophic climatic shifts. Digital twins 
can and must close these gaps, but to do 

so will require coordinated development 
across scientific disciplines.

Digital twin
A digital twin of Earth is an information 
system that exposes users to a digital 
replication of the state and temporal 
evolution of the Earth system constrained 
by available observations and the laws of 
physics.

While we are familiar with a plethora of 
observation-based monitoring tools that 
document our impact on the environment, 
only physics-based simulation models 
can help us to grasp the causes of change 
and explore options for future adaptation 
and mitigation actions. The ongoing step 

change in the physical content of Earth 
system models is making them amenable 
to approaches that harmonize the physical 
laws they encode with ever more extensive 
observations to provide the best possible 
estimate of the state of our planet. Hence, 
digital twins must focus exactly on how best 
to realize this convergence of the modelling 
and observation worlds.

A methodological framework for the 
twin’s architecture already exists in the 
form of data assimilation, which numerical 
weather prediction has developed with 
success over decades10. Data assimilation 
combines data from different observational 
sources with physical Earth system model 
simulations to derive an estimate of the state 

Credit: Map of Layerace / Freepik

What if...?

What if...?

What if...?

NATURE CLIMATE CHANGE | VOL 11 | FEBRUARY 2021 | 80–83 | www.nature.com/natureclimatechange

Drawing on Destination Earth:  Bauer, Stevens, Hazeleger.  “A Digital Twin of Earth for the Green Transition”. Nature Climate Change 11, 80–83 (2021)



The vision of Earth-2 shaped by world-leading scientists

Peter DuebenPeter Bauer
ECMWFECMWF

Bjorn Stevens
MPI-Hamburg

Francisco Doblas-Reyes
Barcelona Supercomputing Center

Thought-leading weather & climate visionaries, champions of interactive digital twins.

Thomas Schulthess
ETHZ and CSCS



Earth-2 is in Collaboration with International Weather and Climate Science
NVIDIA’s AI, engineering & full-stack expertise complement research capacity in academia & government.
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Deuben & Bauer (2018), 6° , 60x30, 1.8K pixels, MLP

WeatherBench, Rasp et al. (2020). 5.625°, 64x32, 2K pixels, CNN

Weyn et al. (2019), 2.5° N.H only, 72x36, 2.6k pixels, ConvLSTM

DLWP, Weyn et al. (2020). 2°, 16K pixels, Deep CNN on Cubesphere/(2021) ResNet

FourCastNet, Pathak et al. (2022), 0.25°, ~1,000,000 Pixels, ViT+AFNO

GNN, Keisler et al. (2022), 1°, 64,000 Pixels, Graph Neural Networks

FourCastNet: A data-driven weather predictor of unusually high resolutionThe not-so-quiet revolution in data-driven weather prediction!
Staggering ~500x increase in resolution in 5 years 



Input:
Coefficient 
Function

Convolution
Operator Non-linearity

Output:
Solution
Function

..

ICML 2023 (https://arxiv.org/abs/2306.03838): Bonev et al., Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere

• Fourier transform for global convolution

• Learns solution operator, mesh and resolution invariant

• Training data: ERA5 reanalysis

• Autoregressive time interval: 6 hours

• 73 state variables selected:
• Temperatures, winds, geopotential & humidity 

(surface & 12 vertical levels)
• Surface pressure, column water vapor, …

https://github.com/NVIDIA/torch-harmonics

Spherical harmonics enable stable, high-fidelity long rollouts. 

FourCastNet uses the Spherical Fourier Neural Operator (SFNO)



FourCastNet

• Scope  Global

• Model Type Full-Atmosphere AI Surrogate

• Architecture Fourier Neural Operator

• Resolution 25km, 6-hourly (up to 10km, 1-hourly)

• Training Data ERA5 Reanalysis

• Initial Condition ERA5 / GFS / UFS

• Training Time O(1000) GPU-hours (NVIDIA A100 80GB)

• Inference Time 3 sec (10-day forecast)

• Calibration Initial condition + Bayesian model uncertainty

• Speedup vs NWP O(1,000 – 10,000)

• Power Savings O(1,000) 

• Max Stable Rollout Years

• Scalability Over 90% up to 4000 GPUs, 140 petaFLOPS

• Access  Open-source



FCN forecasts extremes with high fidelity.
Including tropical cyclones, extra-tropical cyclones, and atmospheric rivers.



observed

predicted

observed

ensemble

FCN’s speed enables massive ensembles.

To capture low-likelihood high-impact extreme events more accurately – far into the long tails of distributions



REALISTIC HURRICANE TRACKS OF HURRICANE HARVEY THERMAL WIND STRUCTURE OBEY THEORY AND PHYSICS-BASED MODELS

FourCastNet learns physics
From data, without constraints
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Towards kilometer-scale emulation

Model: FourCastNet ~ 2.5B Parameter FCN (5km Resolution)

System: 4K H100

Training:  Full State Vector, 10 Years  >  5 PB  >  ~3 Days

Inference:  30 Days, 1000-member ensemble >  ~1 Hour

O(1,000)X Speed-Up Versus Simulation
Full State Vector Interactivity

Any Region

Any Time Period

Exabytes of Data to Store

NEED

CHALLENGE

To meet the needs of society: 

(i) predicting impacts at scales that matter  

(ii) interacting with data at low-latency



Full State Vector Interactivity – Any Region – Any Time Period

• Naively scaling to km resolution is computationally infeasible 
(>12k H100s needed to fit model)

• Need multi-resolution, progressive learning approaches to 
make this tractable

• Use 25km FCN as the backbone and learn a decoder to 
predict at 2.5km scale, progressively increasing resolution 
Graph Neural Operator to work on irregular data grids

• Spherical Fourier Neural Operator for global 
integration

• Graph Neural Operator to query at any spatial 
resolution

Towards kilometer-scale emulation



SFNO trained on 10km ICON simulations (nextGEMS cycle 2)
Higher resolution improves forecast skill

• Challenges:
• 9x more compute trained from scratch (fine-tuning from 30km 

reduces cost by 75%)
• 7x longer inference time (100-member ensemble in 15 minutes)
• 2.5x more memory
• Fine-scale blurring remains

• Limits of learning are yet to be seen!



Key challenges towards global km-scale emulation

Global auto-regressive ML forecasting

• ECMWF blog on AIFS, “The IFS is unparalleled by ML models for the breadth of variables it predicts and its spatial resolution”.

• MSE training optimizes for the ensemble mean, especially with multi-step fine-tuning, resulting in fine-scale blurring and 
lower effective resolution than the training data.

• Ensembles are hard to calibrate.

• DDWP is dependent on data assimilation for training datasets and real-time initial conditions.

• Training directly on observations – multi-modal, sparse and unevenly distributed data.

Global km-scale auto-regressive ML forecasting

• Model size and data should be scaled equally – à la Chinchilla (2022).

• Increased spatial resolution requires finer timesteps, but error accumulates with autoregressive rollout.

• Training SFNO on km-scale global data from scratch requires at least 12k H100s! Progressive SR fine-tuning could bring it 
down to 4k H100s. 



Could Generative AI offer an alternative pathway for km-scale emulation? 
Gen AI not new in data-driven weather and climate prediction, but the current gen AI revolution could be game-changing… 

Duncan et al. (2022), Generative Modeling of High-resolution Precipitation Forecasts, arXiv:2210.12504

L1 loss only L1 + adversarial loss



Generative diffusion modeling for regional km-scale forecasts
Tapping into extensive gen AI research and optimizations being developed

Mardani et al. (2023), Generative Residual Diffusion Modeling for Km-scale Atmospheric Downscaling, arXiv: 2309.15214



Generative diffusion modeling for regional km-scale forecasts
Tapping into extensive gen AI research and optimizations being developed

Mardani et al. (2023), Generative Residual Diffusion Modeling for Km-scale Atmospheric Downscaling, arXiv: 2309.15214



12.5x downscaling (25km à 2km) and channel synthesis
Stochastic prediction of radar reflectivity, temperature and 10m winds

FCN Forecast ResDiff WRF



Tropical cyclones more intense and compact
Not just super-resolution, but distribution shifts and (some) physics is learned

Figure 5: A comparison of the 10m windspeed (m/s) maps, distributions and the axisymmetric cross section
from typhoon Chanthu (2021) on 2021/09/11:12:00:00UTC. Panels (a),(b),(c) show the 10m windspeed from
ERA5, ResDiff downscaling of ERA5 and the target (WRF), respectively. The ResDiff panels show the first
ensemble member. The solid black contour indicates the Taiwan coastline. Storm center of the ERA5, ResDiff
and WRF are shown in red ‘+‘, orange diamond, and the black dot, respectively. Panels (d) and (e) show the
distribution shift (normalized PDFs) for the entire CWA domain and for the typhoon selected region in the
top panels. Panel (f) shows the axisymmteric structure of the typhoon about its center. For the ResDiff
curves, line is the ensemble mean and the shading shows one standard deviation around the mean.

We find that ResDiff is able to correct the structure of tropical cyclones accurately. Fig. 5(a)-(f) shows the
structure of typhoon Chanthu (2021), the only typhoon that entered the domain in the out-of-sample year, on
September 12 at 00:00:000 UTC. Compared to the target data (panel c) the poorly resolved typhoon in the
ERA5 (panel a) is too wide and does not include a closed contour annulus of winds above 16 m/s surrounding
an overly quiescent eye-wall. ResDiff downscaling (panel b) is able to recover much of the spatial structure of
the windspeed compared with the target. The improvement in the location of the typhoon’s center could be
a combination of improved prediction and the increase in resolution. The skill of the ResDiff downscaling
compared to interpolating ERA5 can be more clearly quantified by calculating the mean axisymmetric
structure of the storms as a function of radius from eye-wall center (panel f). Notably, with downscaling the
radius of maximum winds decreases from 75km to about 25km while the windspeed increases from 20 m/s to
50 m/s – both favorable improvements.

Probabilities of damaging typhoon winds shown in in panels (d) and (e) in Fig. 5 are significantly improved.
In ERA5 (red), occurrence of weak wind speeds is over-estimated and the damaging extreme hurricane winds
(above 25m/s) are missing. ResDiff better predicts the chances of the strong winds most likely to impact
society and infrastructure. Further analysis (see supplementary material) expands beyond this case study to
examine generated wind statistics for several hundred typhoons that crossed the domain during 1980 to 2020.
Although no target data is available, when comparing the maximum windspeed and radius of maximum
windspeed from ResDiff predictions to a reference from the Japan Meteorological Agency best track dataset
[3] ResDiff is found to correct at least 75% of the error in intensity for windspeed below 50m/s but only 50%
of the error for higher windspeeds.
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A promising pathway to km-scale prediction…

Could ResDiff be scaled to multiple regions, perhaps the entire globe?

• 1000-member ensemble in 8 minutes. Massive ensembles for free (sampling from distribution)

• 200x data compression, 500x faster, and 2000x more energy efficient than a WRF simulation at 2km

• End-to-end ML solution when coupled with a global ML predictor

• Could be adapted for climate prediction by conditioning on hi-fidelity regional climate data, e.g., CORDEX
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Earth-2 Platforms

NVIDIA
ACCELERATED COMPUTING

MODULUS PHYSICS-ML
FOURCASTNET

OMNIVERSE
DIGITAL TWINS



3 supercomputers: Simulation, AI, Visualization
Accelerated Computing



Open-Source, Physics-ML Platform + Cloud-native end-to-end MLOps
NVIDIA Modulus

Data AI Model 
(e.g., FourCastNet, 

ResDiff)

High-
Performance 
Data Pipes

Physics-Based
Guardrails

Accelerated 
Inference

Distributed
Training

Modulus

• End-to-end MLOPs pipeline for data ingest, processing, 
training, inference, deployment

• Optimized training and inference

• E2MIP for access to popular pre-trained models (a model zoo)

• E2MIP diagnostics and scorecards to verify, validate, inter-
compare models

• Recipes for model development and fine-tuning for regional 
prediction, specific phenomena (cyclones, heat waves, etc.)

https://github.com/NVIDIA/modulus



Connecting Complex Simulations, Data and AI workflows, rendered in 3D
NVIDIA OMNIVERSE ENTERPRISE XXX

RTX 
Rendering

IndeX 
Rendering

NeuralVDB Nucleus

AI & 
Modulus

Earth Digital Twin Portal

Earth-2 Platform

Base 
Command

Triton
Inference

Earth-2 Digital Twin

Data Sources



The Vision of Earth-2
Is Beginning to Take Shape
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