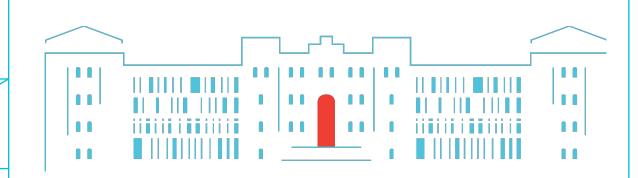
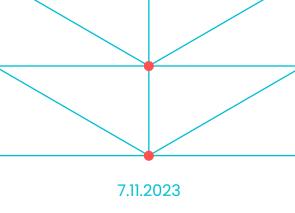
Some recent improvements of parallel-in-time algorithms

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955701. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Belgium, France, Germany, and Switzerland.

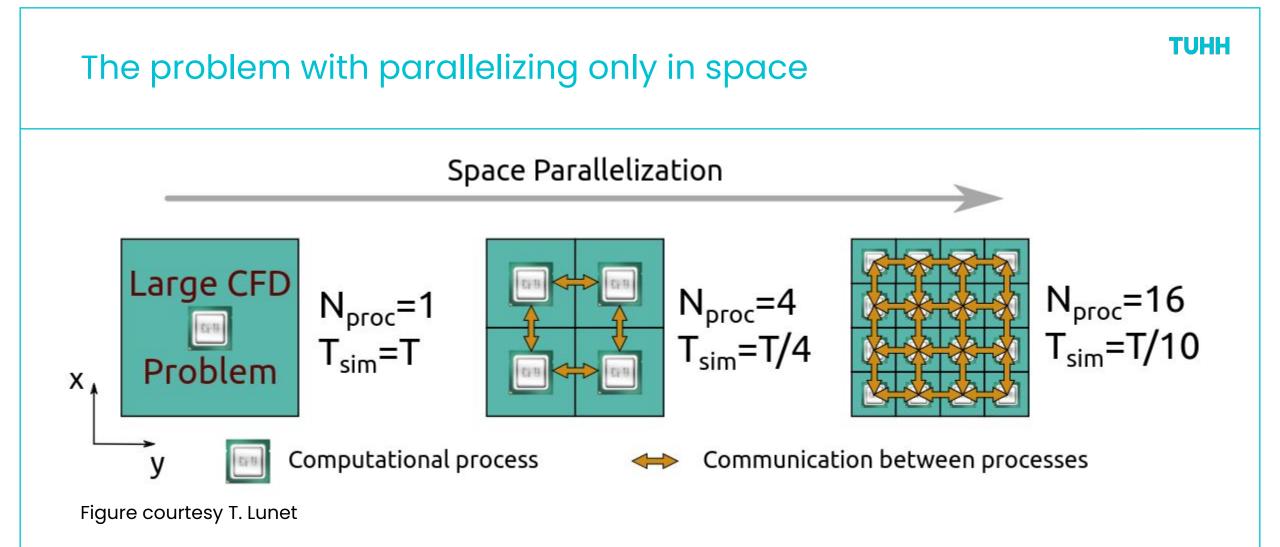


TUHH Technische Universität Hamburg

Daniel Ruprecht

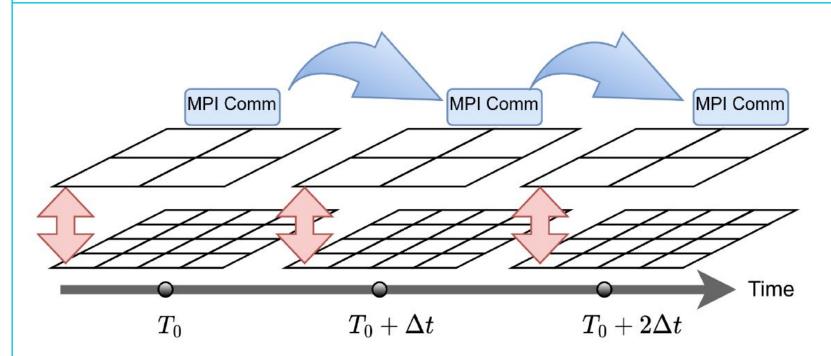


Results by Abdul Ibrahim, Thibaut Lunet, Thomas Baumann



- Spatial strong scaling eventually saturates
- Even with perfect weak scaling in space, increased time resolution still increases solution times

Parallel-across-the-steps: the basic idea

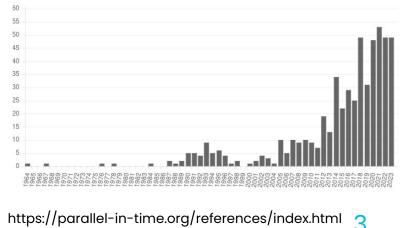


We cannot completely avoid serial dependency in time but we can *relax* it.

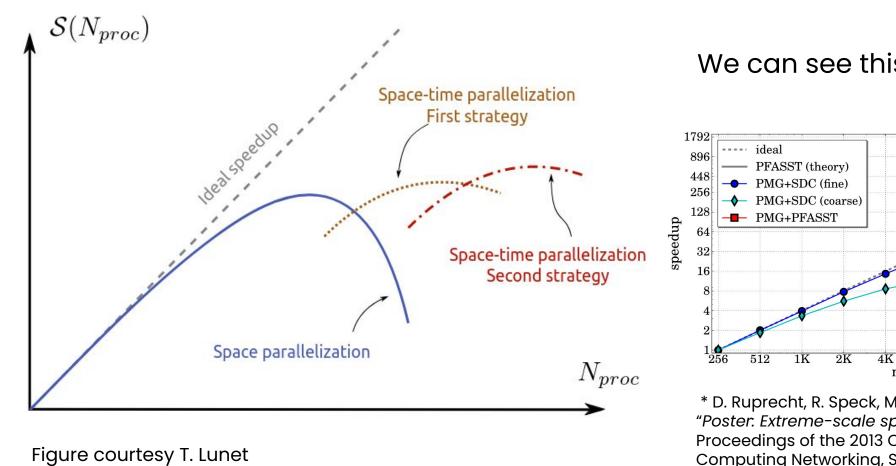
• First idea published in 1964

TUHH

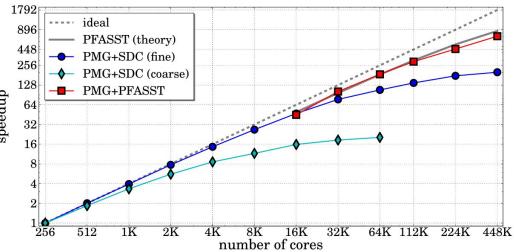
- Small surge of interest in 1990's
- rapid growth of the field since 2001



What PinT promises to deliver



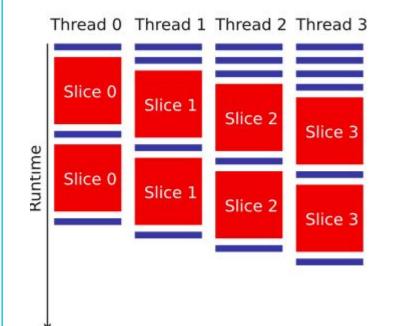
We can see this in practice! Sometimes.



* D. Ruprecht, R. Speck, M. Emmett, M. Bolten, and R. Krause, "Poster: Extreme-scale space-time parallelism," in Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, ser. SC '13 Companion, Denver, Colorado, USA, 2013.

TUHH

PinT: The challenge



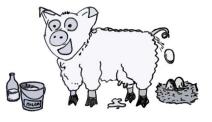
The coarse propagator is a serial bottleneck:

$$s(N_{\mathrm{p}}) \leq \min\left(\frac{N_{\mathrm{p}}}{N_{\mathrm{it}}}, \frac{\mathrm{runtime\ fine}}{\mathrm{runtime\ coarse}}\right)$$

This is for *Parareal,* but similar bounds hold for other algorithms like *MGRIT* or *PFASST*

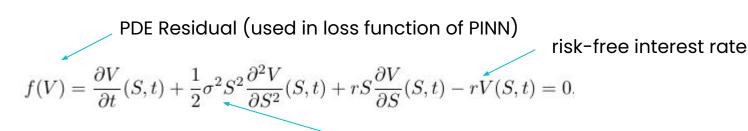
Thus, coarse propagator needs to be both fast and reasonably accurate.

Proverbial *"Eier legende Wollmilchsau"* ... animal that lays eggs, gives milk and provides wool.



de:User:Pixelrausch, CC BY-SA 2.0 via Wikimedia Commons

Using ML to build coarse propagators



volatility

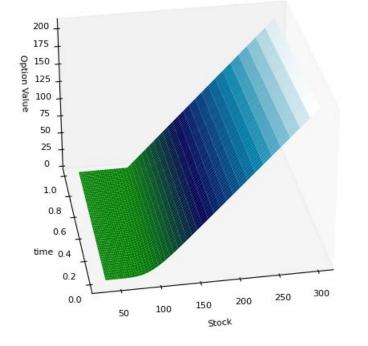
• Boundary conditions

 $V(t,S) \sim 0$ as $S \to \infty$, for fixed t.

V(t,0) = 0 for all t.

• Expiration / end time condition

 $V(T,S) = \max(S - K, 0)$ for all S

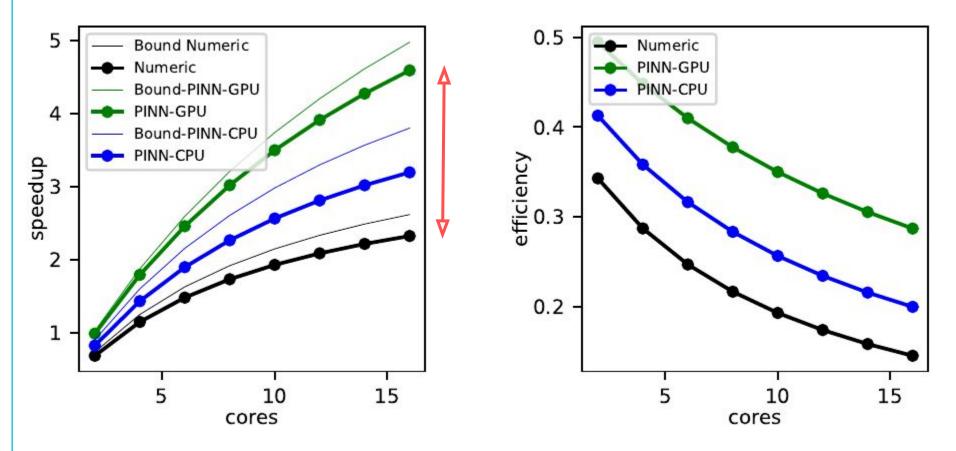


TUHH

Work by: Abdul Qadir Ibrahim, M. Sc.

A. Q. Ibrahim, S. Götschel, and D. Ruprecht, "*Parareal with a physics-informed neural network as coarse propagator*," in **Euro-Par 2023: Parallel Processing**, Springer Nature Switzerland, 2023, pp. 649–663.

Using ML to build coarse propagators



Work by: Abdul Qadir Ibrahim, M. Sc.

A. Q. Ibrahim, S. Götschel, and D. Ruprecht, "*Parareal with a physics-informed neural network as coarse propagator*," in **Euro-Par 2023: Parallel Processing**, Springer Nature Switzerland, 2023, pp. 649–663.

PINN coarse propagator on GPU yields more than twice the Parareal speedup than a mesh-based coarse propagator.

TUHH

Performance modelling and comparison

$$\boldsymbol{u}_{n+1}^{k+1} = \mathbf{B}_0^0 \boldsymbol{u}_n^k + \mathbf{B}_1^0 \boldsymbol{u}_{n+1}^k + \mathbf{B}_0^1 \boldsymbol{u}_n^{k+1} + \dots$$

Algorithm	$\mathbf{B}_1^0\;(oldsymbol{u}_{n+1}^k)$	$\mathbf{B}_{0}^{0}\;(oldsymbol{u}_{n}^{k})$	$\mathbf{B}_0^1 \; (oldsymbol{u}_n^{k+1})$
damped Block Jacobi	$\mathbf{I}-\omega\mathbf{I}$	$\omega oldsymbol{\phi}^{-1}oldsymbol{\chi}$	_
ABJ	$\mathbf{I}- ilde{oldsymbol{\phi}}^{-1}oldsymbol{\phi}$	$ ilde{oldsymbol{\phi}}^{-1}oldsymbol{\chi}$	-
ABGS	$\mathbf{I}-\tilde{\boldsymbol{\phi}}^{-1}\boldsymbol{\phi}$	<u> </u>	$ ilde{\phi}^{-1}oldsymbol{\chi}$
PARAREAL	_	$(oldsymbol{\phi}^{-1} - ilde{oldsymbol{\phi}}^{-1})oldsymbol{\chi}$	$ ilde{oldsymbol{\phi}}^{-1}oldsymbol{\chi}$
TMG	$(1-\omega)(\mathbf{I}-\mathbf{T}_C^F\boldsymbol{\phi}_C^{-1}\mathbf{T}_F^C\boldsymbol{\phi})$	$\omega(oldsymbol{\phi}^{-1}-\mathbf{T}_C^Foldsymbol{\phi}_C^{-1}\mathbf{T}_F^C)oldsymbol{\chi}$	$\mathbf{T}_{C}^{F} oldsymbol{\phi}_{C}^{-1} \mathbf{T}_{F}^{C} oldsymbol{\chi}$
TMG_{c}	_	$(oldsymbol{\phi}^{-1} - \mathbf{T}_C^F oldsymbol{ ilde{\phi}}_C^{-1} \mathbf{T}_F^C) oldsymbol{\chi}$	$\mathbf{T}_{C}^{F} ilde{oldsymbol{\phi}}_{C}^{-1} \mathbf{T}_{F}^{C} oldsymbol{\chi}$
TMG_{f}	$(\mathbf{I}-\mathbf{T}_{C}^{F}oldsymbol{\phi}_{C}^{-1}\mathbf{T}_{F}^{C}oldsymbol{\phi})(\mathbf{I}-oldsymbol{ ilde{\phi}}^{-1}oldsymbol{\phi})$	$(ilde{oldsymbol{\phi}}^{-1} - \mathbf{T}_C^F oldsymbol{\phi}_C^{-1} \mathbf{T}_F^C oldsymbol{\phi} oldsymbol{\phi}^{-1}) oldsymbol{\chi}$	$\mathbf{T}_{C}^{F} oldsymbol{\phi}_{C}^{-1} \mathbf{T}_{F}^{C} oldsymbol{\chi}$
PFASST	$(\mathbf{I}-\mathbf{T}_{C}^{F} ilde{oldsymbol{\phi}}_{C}^{-1} \mathbf{T}_{F}^{C} oldsymbol{\phi}) (\mathbf{I}- ilde{oldsymbol{\phi}}^{-1} oldsymbol{\phi})$	$(ilde{oldsymbol{\phi}}^{-1} - \mathbf{T}_C^F ilde{oldsymbol{\phi}}^{-1}_C \mathbf{T}_F^C oldsymbol{\phi}^{-1}) oldsymbol{\chi}$	$\mathbf{T}_{C}^{F} ilde{oldsymbol{\phi}}_{C}^{-1} \mathbf{T}_{F}^{C} oldsymbol{\chi}$

Can write and analyse different iterative PinT algorithms in a common framework (for linear problems)

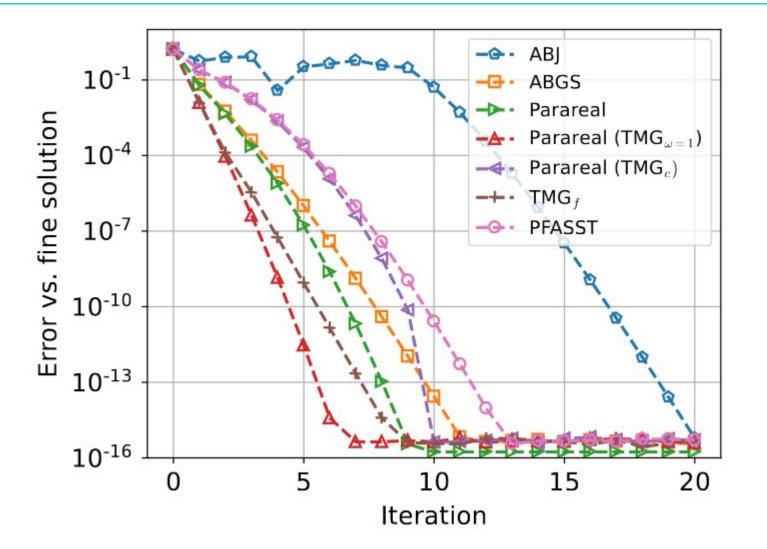
TUHH

Work by: Dr Thibaut Lunet.

M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, "*A unified analysis framework for iterative parallel-in-time algorithms*," **SIAM Journal on Scientific Computing**, vol. 45, no. 5, 2275–A2303, 2023.

Performance modelling and comparison

Can predict how different methods will converge



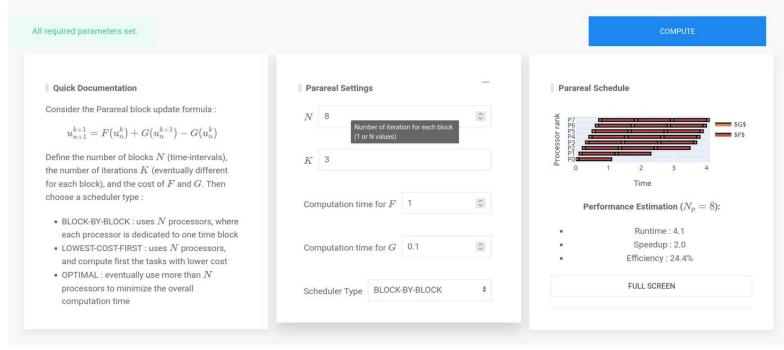
Work by: Dr Thibaut Lunet.

M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, "*A unified analysis framework for iterative parallel-in-time algorithms*," **SIAM Journal on Scientific Computing**, vol. 45, no. 5, 2275–A2303, 2023.

тинн

Performance modelling and comparison

https://time-x.eu/educational-website-for-first-performance-analysis-of-pint-algorithms/



TUHH

Work by: Dr Thibaut Lunet.

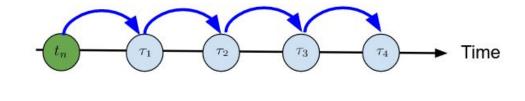
M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, "*A unified analysis framework for iterative parallel-in-time algorithms*," **SIAM Journal on Scientific Computing**, vol. 45, no. 5, 2275–A2303, 2023.

Combined with a unified performance model by Bolten et al. 2023 from BU Wuppertal, we can predict performance of PinT methods on realistic HPC systems.

M. Bolten, S. Friedhoff, and J. Hahne, "Task graph-based performance analysis of parallel-in-time methods," *Parallel Computing*, vol. 118, p. 103050, 2023

Adaptivity and soft-fault resilience

Serial SDC



$$u_m^{k+1} = u_n + \Delta t \sum_{j=1}^M q_{m,j} f(u_j^k) + \Delta t \sum_{j=1}^m \Delta \tau_j [f(\tau_j, u_j^{k+1}) - f(\tau_j, u_j^k)]$$

quadrature terms

correction terms

Parallel SDC τ_1 τ_2 τ_3 τ_4 Time

$$u_m^{k+1} = u_n + \Delta t \sum_{j=1}^M q_{m,j} f(u_j^k) + \underline{\Delta t \alpha_m [f(\tau_m, u_m^{k+1}) - f(\tau_m, u_m^k)]}$$

quadrature terms

correction terms

TUHH

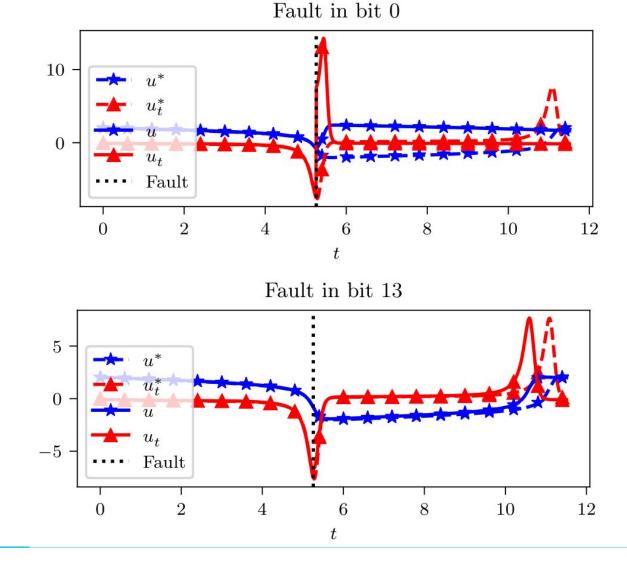
Work by: Thomas Baumann.

T. Baumann, S. Götschel, T. Lunet, D. Ruprecht, and R. Speck, *"Adaptive time step selection for spectral deferred corrections*," in preparation, 2024

11 11

Adaptivity and soft-fault resilience

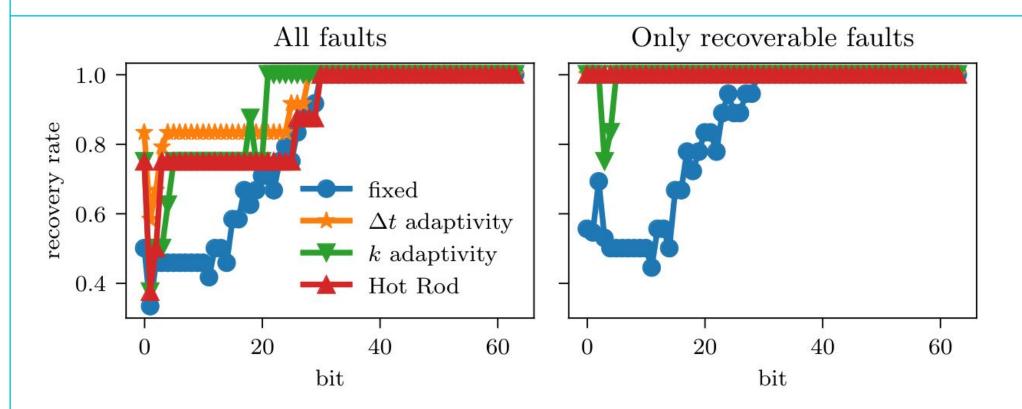
- Iterative nature of algorithm can protect against "bit flips"
- Flips show up in residual.
- Can mitigate, restart or continue to iterate and hope for the best!



Work by: Thomas Baumann.

T. Baumann, S. Götschel, T. Lunet, D. Ruprecht, and R. Speck, *"Adaptive time step selection for spectral deferred corrections*," in preparation, 2024

Adaptivity and soft-fault resilience



Suitable mitigation strategies can catch almost all faults in later bits and fix all recoverable faults.

Work by: Thomas Baumann.

T. Baumann, S. Götschel, T. Lunet, D. Ruprecht, and R. Speck, *"Adaptive time step selection for spectral deferred corrections*," in preparation, 2024

Thanks.

Hamburg University of Technology (TUHH) Chair for Computational Mathematics Institute of Mathematics Am Schwarzenberg-Campus 1 21073 Hamburg Tel.: +49 40 42878-3330 www.tuhh.de

tuhh.de

TUHH Technische Universität Hamburg