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Figure 2: Example input fields (upper row) and fields provided by the upsampling layer in Level 6 (lower row)

for the UNet model for a 512x512 patch covering Denmark and southern Norway and Sweden. The first 6
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Figure 4: An example forecast for 13:00Z on September 16, 2023 made using theNigtainddel. ie map
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Right: ROC curve for the same model. While ttagomity of Tweets is correctly classified, further analysis on

misclassified Tweets identified the lack of relevant information in the text to make a correct judgement as the
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Figure 6: Meassquarederror (MSEperformance on test dataset for longwave fluxes (left) and longwave

heatingrates (right), comparing model designs featuring Gigi¢ RNNs and LSHype RNNs. LSTMs reduced

errors for both fluxes and heating rates by approximately 10%............. 22....

Figure 7: Sample profiles of predictions from the leading SW RNN model. Columns indicate different profiles,

with rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines
coincide almost everywhere, illisNJ 6§ Ay 3 GKS KAIK ljdzZ tAde 2F LINBRAOGAZY ®
Figure 8: Sample profiles of predictions from the leading LW RNN model. Columns indicate different profiles,

with rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue arge dirzes
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Figure 9: lllustration of the sefupervised training of AtmoRep. Local sptinee data cubes of state variables

are sampled and then tailed into tokens of which adem subset gets masked. AtmoRep then reconstructs

the data of the masked tokens with an ensemble prediction. The statistical loss is then used for
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Figure 10: Target domain of the AtmoRep downisgahpplication. The surface topography in metres above

sea level is used to highlight the domain. The target domain of the trained competing WG is

NBYRSNBR AY 0fF O] XXXXXXXXXXXXXXXXXXXXXXXXXXXDXXXXXDX)
Figure 11: Diurnal cycle of the RMSHt)land the gradient ratio (right) as averaged over the test year 2018

from the AtmoRep downscaling experiment. The shaded area represents the standard deviation of the scores

F& Fy SadAYFGS 2F GKSANI dzy OSNIFAYGEXXXXXXXXXXXXXXXXX)>
Figure 12: Poer spectrum of the 2m temperature field from the COSMO REA®6 grtyutiddata (blue line)

and the downscaled product of AtmoRep (green line). The spectra are averaged over the whole test year.

Right: Diurnal cycle of the RMSE for the summer months JIX2028X X X X P X PP Do H

Figure 13: As Figure 11, but joint evaluation of results obtained with AtmoRep (blue) and the WGAN

Figure 14: lllustration of the DCv2 algorithm. Input to the models is a certain number of random crops of the
original input samples. The ResNet50 and MLP are trained with the pdalbels assigned to each sample by
the spherical ¥ S Yy AXEEX X X X X XXX XXX XXXXXXXXXXDPXop

Figure 15: Result of the sphericaM€ans clustering in-B embedding space. The output of the MLP has 128
dimensions and is reduced to 2 dimensions Us#figt 9 X X X X X X X X X X X X X X X X X X X P X do p
Figure 16: Mean duration arstandard deviation of each larggale weather regime. The regimes result from
the clustering algorithm (cf. Fig. 15) assigning each data sample (day) to a cluster. All regimes have a mean
duration of X2 days, where some regimes show very large standaxibtions (e.g. regime

Figure 17: New runs are configured via this form on the Mantik platform GUI. Both model parameters and
clusterspecifications are editable from this form, which ensures flexibility for application developers (Note,

the same scrollable form is split into two images for clarity)............. 38
Figure 18: Tracking performed for our Runs can be visualised via tigeated MLflow GUI, which allows the
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Figure 19: Tracking performed for our Runs can be visualised via the integrated MLflow GUI, which allows the
user to create figuresfdr  lj dzA O1 FylFf@&dA & 2F GKSANI NBadz §aXXXXXXXXX.
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1 Executive Summary

This deliverable provides the description of the updated machine learning solutions for the
MAELSTROM applications that have been developed bas¢deoenhanced benchmark datasets
described in Deliverable 1.2 and 1.3 (D1.2 and D1.3). A general overview on the progress and a
discussion of deviations from the proposal is provided in Section 2. There has been no change of plans
for the application develpment and, overall, the work on the MAELSTROM applications is developing
nicely (see detailed presentation in Section 3). However, MAELSTROM has supported two more
application areas; the development of full machine learned weather forecast models and the
development of Foundation Models for weather and climate applicatpas both areas have shown

very fast developments and significant impact in the last two years and as they are very interesting for
al! 9[ { ¢ whdedya appr@ch as the developed toele very data and compute intensive.
Finally, Section 4 is presenting an example of how the Mantik tool, developed in work package 2, can
be used for the developments of machine learning applications. Application 2 (AP2) from the set of
MAELSTROM appligats serves as an example here.

D14 Revisions of customised ML solutions for enhanced datasets 7



MAELSTROM 282 .

2 Introduction

2.1 About MAELSTROM

¢t2 RS@St2L) 9dzNRBLISQa 02 VYLlzi SNI | NOK Adésy© bedphidd 2 T
compute system designs for optimal application performance and energy efficiency, a software
framework tooptimise usability and training efficiency for machine learning at scale, anddaede
machine learning applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of
computing systems regarding energy consumption, tifmeolution, numerical precision and solution
accuracy. Customised compute systems will be designed that are optimised for application needs to
A0NBY3IGKSY -palfiBabd® Qrampuihg Déttfolio andto pull recent hardware
developments, driven by general machine learning applications, toward needs of weather and climate
applications.

The MAELSTROM software framework will enable scientists to apply and compare machine learning
tools and libraries effiently across a wide range of computer systems. A user interface will link
application developers with compute system designers, and automated benchmarking and error
detection of machine learning solutions will be performed during the development phasés Will

be published as open source.

The MAELSTROM machine learning applications will cover all important components of the workflow
of weather and climate predictions including the processing of observations, the assimilation of
observations to generaténitial and reference conditions, model simulations, as well as -post
processing of model data and the development of forecast products. For each application, benchmark
datasets with up to 10 terabytes of data will be published online for training and imadéarning
tool-developments at the scale of the fastest supercomputers in the world. MAELSTROM machine
learning solutions will serve as a blueprint for a wide range of machine learning applications on
supercomputers in the future.

2.2 Scope of thisleliverable

2.2.1 Objectives and work performed in this deliverable

To close the MAELSTROMdasign cycle between application, software and hardware developments
and Work Package 1, 2 and 3 for the second time, this deliverable provides an update on the
develgpments of the MAELSTROM applications. The progress that has been achieved is documented
per MAELSTROM application in Section 3. The developments are based on the hardware benchmarks
that were performed in Work Package 3 (see D3.4 and D3.6) and some ajjihieations are also
already making active use of the software tools of Work Package 2 (see D2.3 and D2.4) as documented
for AP2 in Section 4.

D14 Revisions of customised ML solutions for enhanced datasets 8
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2.2.2 Deviations and counter measures

Two developments have recently changed how machine learning will impactehener and climate
domain in the medium and longer term future that were not foreseeable during the writing phase of
the MAELSTROM proposal.

The first development is the great success of entire weather prediction systems based on machine
learningthat are(yet) trained from the ERAS reanalysis dataset. The models are now showing a level
of quality that is beating scores for deterministic weather predictions of conventional models,
therefore challenging the entire way of how numerical weather predictidorimed. Big technology
companies such as Google/Deepmind, NVIDIA, Huawei and Microsoft are building their own model
configurations. The MAELSTROM applications are in general following a slightly different motivation
when compared to the full machine leang weather forecast models as they advance conventional
models with machine learning in a hybrid machine learning / conventional approach, for example via
post-processing or via the emulation of model components. The new madbaraed weather
models do ot make the MAELSTROM applications obsolete as hybrid approaches for numerical
weather prediction will still play a very important role for the future of numerical weather predictions.
Therefore, the development of the six MAELSTROM applications haveegeacand the results are
documented below. However, MAELSTROM has embraced the new developments supporting the
evaluation and comparability of machine learned weather forecast models. The level of support is
O2yaraiSyid ¢AGK a! 9[ { thindleaRel apprBdsted ntom éomfaabler TwpS Y I C
publications have been supported by MAELSTROM in this context.

BenBouallegue et al. 2028 performing a detailed evaluation to understand how the Pangu Weather
machine learning model that was developedBiret al. 2023compares to results from conventional
weather models. This is important as the new models use very different concepts for numerical
discretisation and time stepping techniques, and as weather predictions need to be trustable to be
useful with agood understanding of limits in predictability that cannot easily be derived from
deterministic forecast scores.

Rasp et al. 2023 publishing a new benchmarking framework for pure machine learning models that
provides access to training data and a diethicomparison of diagnostics to provide a fair comparison

of results for different machinéearned weather forecast models. The paper provides a new baseline

for model comparisons and follows the concept of MAELSTROM as large datasets are made available
to the public for download with easy access facilitated by notebooks.

To engage with the pure machine learning model developments was also important for MAELSTROM
as the developed models are among the largest machine learning tools that are currentlypgebelo

in the weather and climate domains. Both in terms of data but even more importantly in terms of
parallel training.

The second development was the move towards machine learning foundation modelsany
domains. These models are very large machine lagrapplications that follow a different philosophy
when compared to machinkearned tools trained for a specific application, as they use semi
supervised training to learn the basic features and connectivity of the data in a pretraining step. In a
secondstep, the learned abstraction of the data can be used for-fiméng for specific tasks and
applications. This approach leads to tools that are more generic compared to tools from direct

D14 Revisions of customised ML solutions for enhanced datasets 9
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supervised training. Furthermore, foundation models often providtdy results when compared to
specific tools for applications in many domains, and in particular for large language models.

The domain of weather and climate is starting to test whether foundation models can be useful for
weather and climate applicatiorand, if successful, foundation models may lead to yet another-step
change in the quality of machine learning tools. The approach is of particular interest for MAELSTROM
as the resulting models need very large scale training data sets andslzalge machie-learned
models that need significant high performance compute power to be trained. MAELSTROM has
therefore supported one of the first approaches to build a foundation model for weather and climate
science, called AtmoRep (Lessig et al. 2023), and AtmisR®w also tested for use in Application 5

(see Section 3.5).

D14 Revisions of customised ML solutions for enhanced datasets 10
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3 Update on Advanced Machine Learning solutions for the six
applications

3.1 AP1: Blend citizen observations and numerical weather forecasts

The goal of AP1 is to produce high resolution (1x1 lkoujlia temperature forecasts with a lead time

of up to 58 hours for the Nordic countries, using NWP forecasts as inputs and recent conditions as
estimated by citizen observations. In the context of the recent developments in purelyddstan
forecasting,this application is a hybrid approach, leveraging both conventional-pastessing of

NWP output and including information from a starting state based on available observations that the
ML-model can propagate forward in time.

The aim of thigleliverable is to findune the configuration of the et (Fig. 1) in order to improve

its predictive accuracy and make it ready for operational use at-NiitWay. The tNet model was

the most promising of the architectures studied in Deliverable 1.33)Dln the previous deliverable

on scientific testing (D1.3), we noted that the data loading pipeline needed to be improved to allow
for extensive testing of the model. A major outcome of thedesign loop with WP2 and WP3 was a
much improved data process) pipeline. The work, culminating in D3.6, resulted in an improvement

in the average processing performance from 0.42 GB/s (in D1.3) to 3.2 GB/s. This was a result of better
exploitation of hardware resources, including CPUs, GPUs, and memory. Morks detahese
improvements are documented in D2.4. We use these gains to greatly reduce the cost of training a
suitable model.

Input Output
17 16 16 32 16 16 3
Level 1 NE
2 32 64 32 3274
o Conv+Leaky ReLU B>
Level 2 Y m Pooling v
T 16 Upsampling A
Level 3 § Conv >
32 64 64 32 Concatenate

Fig. 1. Schematic diagram of theNét used in this application.

3.1.1 Dataset

The dataset has not changed significantly since Dh&.dataset is still 6TB and contains the same
predictors (14). The main change is that lead timdependent predictors are placed in a separate
variable that does not contain the lead time dimension. This was done to make the dataset more
intuitive for others to use.

D14 Revisions of customised ML solutions for enhanced datasets 11
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The full dataset has two years of daily files. We use the first year {2026 202102) as the training
dataset, where 24 files have been reserved for validation. We use the remaining time perioeD@021
to 202202) for final testing.

As the UNet can introduce artefacts near the borders of the domain it is applied on, we removed a
band of 32 pixels in width around the border when computing the loss function. This was done in
training, validation, and testing.

3.1.2 lterating towards a working-Net model

We spent a significant effort getting a basic configuration of tHedt) model to work properly with

our data. Early attempts appeared to give good validation scores with realistically looking output
fields. However, we determined thatthiswasino I NBadz & 2F GKS ySGg2N] Qa
different spatial scales. All value was provided by the-s&imections on the top level and the lower

levels did not provide any fields that impacted the final output fields. Our compidletUvas
effectively just a simple convolutional neural network. We checked this by plotting examples of
tensors as it passed through the different levels in the network and noted that the final upsample
fields (between level 2 and levell) were all 0.

We believe his problem is caused by the ReLU activation layers, which sets negative inputs to 0 and
keeps positive inputs unchanged. Under certain conditions, these units can go dormant failing to
provide a gradient that helps the network learn new features. Thisfesred to as the "dying ReLU"
problem. We noticed that as the training progressed, more and more ReLU units died. We also tested
exponential linear units, but this gave similar problems, possibly due to vanishing gradients when input
values are very negjge. We found that leaky ReLU activation layers solve this problem. With this type
of activation, we got coarse grained fields as shown in Fig. 2.

air_temperature_0.1_2m

air_temperature_0.9_2m air_temperature_2m bias_yesterday cloud_area_fraction

precipitation_amount
~-

Fig. 2: Example input fields (upper row) and fields provided by the upsampling layer in Level 6 (lower row) for
the U-Net model for a 512x512 patch covering Denmark and southern Norway and Sweden. The first 6 fields for
each type are shown.

Leaky ReLU caed exploding gradients. This was solved by limiting the L2 norm of the gradients to 1,
which is easily implemented by providing an argument to the Adam optimizer in Keras. This does,

D14 Revisions of customised ML solutions for enhanced datasets 12
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however, come with a sizable performance hit (on the order of 20%). i/aal investigate how to
mitigate this performance hit.

We also investigated batch normalisation, which is commonly useeNetbl after each convolution
layer, but before the activation layer. This did not lead to stable results for us. We used
BatchNornalization in Keras, which computes running mean and variance of the inputs to the layer.
We tested different values of momentum (which governs how fast values are adapted). We suspect
that part of the problem is that the batches we provide are not largeugsim and do not contain
samples that are sufficiently random. Our data loader is not designed to give a completely random
sample in each batch. It is possible that due to this, there is a coordinate shift throughout the epoch
and that the batch normalisain keeps lagging behind.

In addition, we tested different methods for splitting the dataset into chunks that are used by each
Horovod process. Each process computes the gradient of a given batch of data, and the gradients are
averaged. By splitting the datet such that each process gets 3 consecutive months of data, we
ensure that all seasons are represented each time a batch is processed. We believe this should lead
to faster learning.

After a lot of trial and error, we came up with a basitleX model wth the following configuration:

6 levels

1x1 convolution size

Splitting the whole domain into patches of size 512x512

Batch size 1

16 features on level 1

Feature factor of 2 (the factor increase in number of features as you increase the level)
2x2 max pobing

Leaky ReLU activation after each convolution

2x2 nearest neighbour upsampling

Cosine decay restarts learning rate schedule, initial learning rate3L.0e
Include extra static predictors: forecast lead time, x/y spatial coordinates

This configuration h&1,314,019 trainable parameters.

3.1.3 Hyperparameter tuning

We tested different settings of the basieNiet configuration. The hypgrarameter space is quite large
and we cannot test every combination. We therefore perturb some of the hppesmeters of this
model, one at a time to see the effect of each parameter (Table 1).

Pooling operator Max Average

D14 Revisions of customised ML solutions for enhanced datasets 13
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Number of levels | 6 3
Pooling size 2x2 4x4
Feature ratio 2 1
Convolution size 1x1 3x3

Table 1: List of hypgrarameters that were tested.

We used the Juelich Benchmarking Environment (JUBE) to organise thephygereter tuning. This

is similar to what we did in D3.6 with testing different hardware and data processing settings. We
schedulel the jobs on a single JUWELS Booster node, performing distributed training on 4 Nvidia A100
GPUs.

Each training run traverses the training dataset three times. We computed the validation score f 30
times throughout the training period and stored the bgsrforming weights. This model state was
then used for final testing.

One important aspect of AP1 is its high resolution grid (1x1km). This means we need many levels in
the U-Net to ensure a broad receptive field. However, this leads to many parameterex&mple, a

6 level UNet has over 1 million parameters. We therefore tested dNéi model where the
downsampling ratio is 4 instead of 2. Then, we can get the same receptive field with 3 levels as with 6
levels. We also changed the 3x3 convolution toxa donvolution.

Because the basis for the input data source (2.5km) differs from the final output grid (1km), there is
an elevation difference that can trivially be corrected for. We created a benchmark model that copied
the raw forecasts and allowed fonaelevation correction with a trainable constant lapse rate. This
was trained to be 7.39°C/km.

We ran each configuration three times and averaged their test loss.

Raw elevation corrected model 1 0.2495 0.0 %
Basic configuration 1,314,019 0.2170 13.0%
Fewer features (feature ratio 1) 13,891 0.2170 13.0%
Mean pooling instead of max pooling 1,314,019 0.2139 14.3%
Fewer levels (3), bigger downsampling ratio { 20,195 0.2174 12.9%
Bigger convolutiorstencil (3x3) 9,000,291 0.2193 12.1%

Table 2: The improvement column shows the fractional decrease in test loss relative to the raw elevation
corrected model.

These results indicate that all models performed quite well, leading to improvements oveawhe
elevationcorrected forecast. The main tuning benefit was to replace the max pooling layer with a
mean pooling layer, leading to a further 1.3% improvement. Max pooling is often used to find well

D14 Revisions of customised ML solutions for enhanced datasets 14
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defined edges in images and it is possible that indbiglication, large scale averages provide more
relevant signals. The other tuning efforts did not lead to any improvement over the basic
configuration.

3.1.4 Assessing the impact of predictor variables

The input data set contains a wealth of predictors. For afienal implementation, including extra
variables causes several challenges. Firstly, they can slow down production because the features can
be expensive to extract from the input model data. Secondly, they make the model more vulnerable
to changes in th&N\WP model. The physics routines in the NWP model we use are tuned over time.
Including a greater number of variables increases the risk of inconsistency between the training
dataset and the data used in operations. We therefore want to make sure thahphe variables do

provide added value.

To do this, we trained the final -Net model on different subsets of the parameters. In one
experiment, we used only the temperature variables (and static predictors such as altitude, lead time,

and x/y coordinates)in the other configuration, we added on the two bias variables (recent bias and
8SAGSNRIeQa oAllaod wSadzZ Ga AYRAOFGS GKIFG LISNF2N]
were omitted (Fig. 3). We also note a reduction in performance when theteroperature and bias

related variables were omitted (difference between black and blue line). Thus, winds, precipitation,

and clouds also provide added value to our model, though to a lesser extent than the bias predictors.

0.35

0.30 -

0.251

0.20+

0.151

Test loss (°C)

—e— Raw model (elevation corrected)
—e— Temperature variables
——

0.101

0.05 1 Temperature+bias variables
—e— All variables
0.00 . . : ‘ ‘ ‘ . .
0 6 12 18 24 30 36 42 48 54

Lead time (h)

Fig. 3: Test loss against foest lead time for models trained with varying sets of predictors.

3.1.5 Operationalization of model and future work

We have worked extensively on integrating the data processing pipeline and-tet bhodel into

a9¢ b2NBI| &QsioreRaktiBgNsysiem.2Wel also performed a long training run using all
available data (by merging the training and testing datasets) to create a trained model that we will use
in production. The operational code is working and we produced a first test far@€igs4).

D14 Revisions of customised ML solutions for enhanced datasets 15
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The next step is to perform some internal evaluation of the forecasts atNtiEEWay, followed by a
launch of the improved product on our weather app Yr (https://www.yr.no).
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Fig. 4: An example forecast for 13:00Z on September 16, 2023 madehesiinal UNet model. The map shows
the 50th percentile forecast for the southern half of the domain.

3.1.6 Data and Code access

The training and testing code is availablehtips://github.com/metno/maelstromitrain, as in
previous deliverables. The JUBE configuration for the scientific tests is found in jubgvall

3.2 AP2: Incorporate sial media data into the prediction framework

Posts ons social media may provide relevant information about the current state of the weather at
the location of the user. This application aims to harvest this information to improve weather
predictions. Fothis, information related to weather needs to be extracted from a rather unstructured
and unreliable data source. As a test balloon, we are developing a model that can determine from the
text of a Tweet whether it was raining at the location and time aiclwhhe Tweet was sent. Our initial
implementation was presented in Deliverable 1.3 (D1.3). Since then, we mainly focused on improving
our training dataset. In addition, we added a new dataset based on precipitation data collected from
weather stations, with improves our evaluation robustness. Finally, we give an outlook to planned
improvements to our model.

3.2.1 Dataset

We use historical English Tweets from 2@020 that include keywords related to the presence of

NI Ay Soadx & NI A yibds oo Bnwdslsséntfrorg adidéni¥ibidie fotafios idthe UK S
which is required to map the Tweet to the precipitation dataset (see D1.3 for more details). Tweets
YIe 0SS tAY1SR (2 @FINAR2dza 3IS23ANF LIKAOIf N&BishA 2y &
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adzaSdzyéd ¢2 O2yFARSydfe YIL ¢6SSiGa G2 LINBOALRAGI (
to have an area at the resolution of the precipitation data (100 km?2).

When trying to improve on our initial model, we realised that a major bottl&rfecthe model is data
quality. Some Tweets clearly stated that it was raining when the precipitation data implied that it was
not raining and vice versa. We therefore decided to move to HR#b(see below) as it incorporates
measurement values to booatcuracy.

In addition, we build a dataset based purely on precipitation measurements from weather stations.

For this, we use MIDAS Open (Met Office 2019), which provides hourly weather measurements from
public weather stations in the UK from 1853 to pmelséVe only include Tweets within 1 km of the
gSIFGKSNI adGlrdAz2y (2 F2aiSNIRIFGE ljd2fAGed ¢KAA f St
which is insufficient to train our model. However, we use this dataset as a final holdout dataset to
evalwate our model performance.

t NEBOALIAGEFGA2Y RFEGE ¢gSNB FaaiA3adySR (2 G4KS ySINBai
total precipitationr) was larger than a threshold valug ,e.n N . We setr)

T8t @ & as defailt. In our previous model, the threshold was set at the noise level of the simulation,

which is much lower. However, further evaluation showed that we clearly-eseémated the

presence of rain with this approach as the weather model will have largecumacies at these low

levels of rain. In addition, depending on the region users will probably be more sensitive to the
presence of rain and a faint drizzle even if correctly predicted will not necessarily be considered
GNIXAYyAy3Aé o0& Yz2al dzaSNERO®

For preogpitation data, we originally used ECMWAS, but now moved to ERfsd (Mufioz Sabater

2019), which has a spatial resolution of 0.1 deg and hourly resolution, which is comparable to the
resolution of ECMWFS. However ERA&nd is a reanalysis dataset, wvibh incorporates
measurements to boost accuracy. The resulting training dataset contains 500K Tweets labelled as
GNI AYyAy3eé YR TtTnnY ¢6SSGa tF0SttSR a ay2d NI AyA

3.2.2 Model

hdzNJ GFal A& (2 LINBRAOG GKS f I 0TSveels. Thitdariby redi@d 2 NJ &
to the task of sequence classification, which is a common problem in natural language processing.
Deep learning models based on the popular transformer architecture (Vaswani et al., 2017) deliver
state of the art results in thidomain (Kowsari et al. 2019). We use the transformer based DeBERTa
architecture. Here, we use the pteained variant DeBERTaV3_small (see D1.2 for further details). As
our data quality seemed to be the main bottleneck, we kept our model architectureamged and

rather focused on improving our dataset and model evaluation. However, due to the benchmarks
performed in D3.6, we noticed that while scaling on 4 GPUs compared to 1 GPU is less than ideal,
energy consumption is still more efficient as the renvagn3 GPUs still require significant power in

their idle state. We therefore always train on 4 GPUs now. In addition, we realised that while
evaluation only takes 30 seconds for 50k Tweets, changing to a different architecture like a large
language model LLM) based architecture may incur considerable bottlenecks when running
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predictions. Additional analysis performed for D3.6 gave us confidence in the performance of our
model as it appears highly optimised, which allowed us to focus more time on impwvimtataset.

3.2.3 Results
Our best model achieves an$tore on the evaluation set based onERAB Y R 2F ndtn 04y 2
FYR ndcn O64ANIAYAYyIEé0d ¢KAA O2NNBalLlRyRa G2 |y !/

to our previous modelHig. 9. It appears that the increase in accuracy of precipitation for our new
dataset improved model performance. However, it is apparently not the main bottleneck for the
model. Further analysis revealed instead that the information contained in a significatiofraf
Tweets is not sufficient for a human to correctly classify these Tweets. Just matching by keywords
appears therefore insufficient for selecting relevant Tweets.
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Fig. 5: Left: Confusion matrix of our best model for the classification of TwieetsiaNJ A y Ay 3¢ 2NJ ay2d N
ROC curve for the same model. While the majority of Tweets is correctly classified, further analysis on
misclassified Tweets identified the lack of relevant information in the text to make a correct judgement as the

main source of error.

3.2.4 Future work

A major challenge for this application is selecting Tweets that contain sufficient information to make
the statement about the presence of rain or generally about the state of the weather. Currently, we
filter out Tweets basd on keywords. However, keywords can be ambiguous like the British newspaper
Sun, which led us to introduce hatedafted rules to filter out Tweets with the casensitive keyword
G{dzy¢s 6KAOK A& NI GKSNI AyO2YLX SaiBatictd theaele®ahcR> ¢S ¢
of the Tweet for our specific task.

Large language models like ChatGPT (OpenAl 2023) or alternative open source solutions like Falcon
180B (Schmid et al. 2023) provide a new paradigm in the NLP community. Initial manual testing ga
promising results that demonstrated that LLMs can potentially help with this complex task. However,

a major challenge appears to be speeding up the evaluation process as potentially a stream of Tweets
needs to be processed from which relevant Tweets salected. We therefore plan to finetune an

LLM specifically for our task, which should improve performance.
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3.3 AP3: Build neural network emulators to spegdweather forecast models and
data assimilation

AP3 concerns the emulation of radiative transfer hwihachine learning. The motivation is the
acceleration through both compression via machine learning and easy use of GPU infrastructure. In
previous deliverables, we focussed on shortwave (SW) radiation, where the sun is the primary source.
We designed a dspoke physiesiformed neural network whose architecture mimicked the
conventional physiecbased solver. This network belongs to the family of recurrent neural networks
(RNN), here recurrent through the vertical structure of the atmosphere. Leveragsgahuition, and
training on the large dataset provided through MAELSTROM, we were able to train highly accurate
emulators of the ECMWF ecRAD Triplecloud solver for the shortwave process. These exhibited RMSE
errors of 0.50 W/mfor the fluxes and 0.014 Kfdr the heating rates on an independent in time test
dataset. In consultation with domain experts, it was decided that this error was sufficiently low to
consider the emulation successful, at least from the perspective of offline errors, i.e. errors when
running the radiative transfer solver decoupled from the weather forecasting model.

Our focus in the time since the last deliverable has been on the longwave (LW) process for radiative
transfer. In combination with shortwave radiation processes, thisglements the radiative transfer

task. Longwave emissions primarily originate at the surface, with it being key to identify: how much is
reflected back from the atmosphere to be reabsorbed by the surface, how much is emitted and
absorbed by the atmospherand how much flux propagates through the top of the atmosphere.

3.3.1 Data

For this phase of reporting, we continue using the same dataset as described previously, as this was
found to be sufficiently accurate for learning the shortwave process. The dataset contains data for
both shortwave and longwave processes. These can bessed from themaelstrom -
radiation -tf CliMetLab datasetusingtteeu b s et = - tafgenent. The corresponding
dataset comprises 21,640,960 examples. This is to be contrasted with the Tier 1 dataset which
contained only 67,840 examples. We also introdupeelviously Tier 2 subsets for validation and
testing, accessible witfit i e2~v al andAt i e2~t e s t EBach of these contain 407,040
columns from 2019 (training data are taken from 2020). Here, we will present results on the Tier 2
data.

3.3.2 Methodology

Given the success of recurrent neural networks for the shortwave process, we focus our attention on
adapting this solution to the new problem. As the dominant source is the surface, we change the
structure of the RNNs. Scalar surface quantities are passe@-tayer multilayer perceptron (MLP)
enabling the model to process surface quantities. The output of this MLP is provided as an input state
to an RNN which is oriented to propagate vertically up the atmospheric column. At each layer, the
RNN receives theINS @A 2dza fF @ SNBERQ KARRSYy adaraS FyR GKS
variables corresponding to this layer of the atmosphere. This RNN propagates information from the
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surface up through the atmospheric column, incorporating information on thdestH the

atmosphere (e.g. temperature, humidity pressure) at each layer. This is followed by a second RNN,
which propagates down the atmospheric column, initialised with the final hidden state of the upward
propagating and is forced with the output séafrom the upwards RNN at each layer. The second RNN
enables the propagation of reflectances back down the column all the way to the surface. The output
at each layer from both RNNs is concatenated together and passed through a single MLP, with shared
weights for all vertical layers, which is applied to each layer separately and calculates a normalised
flux profile (i.e. two components downwards and upwards fluxes). For the SW process, fluxes at the
end of the model are scaled by the incoming solar radigtivhich simplifies the task for the rest of

the network to only calculating relative fluxes. We adopt this approach for LW, but here the scaling
factor is not known griori, but depends on surface properties. We uselayzr MLP to calculate this
scalng factor and multiply the downwards and upwards flux profiles by this prediction. Finally, again
based on the success from the SW application, we use the custom pimfsitsed layer which
calculates the heating rates from the fluxes. This final steys ¢ add further trainable parameters

and the formulation can be found in D1.3.

We test two different RNN blocks, the simpler Gated Recurrent Unit (GRU) and the more complex
Long ShoHTerm Memory (LSTM). We fix a hidden state of 64 neurons for eactaMLRNN in the
model, having found this to be sufficiently large on preliminary testing. Thel@R&dl model has
45,221 trainable parameters and the LSBblbed model has 60,261 trainable parameters. As with the
shortwave process, we produce a highly paréenefficient model in contrast to recent publications
using only MLP or convolutional neural networks which use on the order of million parameters
(Lagerquist et al. 2021, Yao et al. 2023).

Exploratory testing was also carried out to test the suitabitifyother architectures for learning
accurate emulators. Specifically we tested convolutional neural networks, using dilated convolutions
to increase the speed of propagation through the vertical column. Also tested were networks using
the selfattention mechanism that powers transformer architectures. None of the probed models
attained the accuracy of the RNNs as shown in Figure 6.

We minimise the Huber loss, which acts as the malsoluteerror for values greater than 1 and as

the meansquarederror for values less than 1. This was found to result in more accurate models,
measured by RMSE, even compared with training directly on RMSE. To combine the loss of two
objectives, we use a weighting of 1 for the fluxes and 100 for the heating rates.

Training wasarried out with a batch size of 512, the Adam optimiser, an initial learning rate of 0.001
which decreases if validation scores fail to improve after 4 epochs. Early stopping if scores on the
validation dataset failed to improve after 6 epochs was alsa u$eaining was carried out on a single
NVIDIA A10@0Gb GPU, since larger batch sizes using-diatabuted parallel training did not
improve the timeto-solution for the application at hand as shown in previous deliverables. An optimal
solution was redoed in approximately 24 hours.
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Fig. 6: Mearsquarederror (MSE) performance on test dataset for longwave fluxes (left) and longwave
heatingrates (right), comparing model designs featuring Gigi¢ RNNs and LSHiype RNNs. LSTMs reduced
errors forboth fluxes and heating rates by approximately 10%.

3.3.3 Results

Compared to the shortwave solver, where our leading solution attained an RMSE of 0.5@0owtme

fluxes and 0.014 K/d for the heating rates, we now see that estimating the fluxes resuithtty sl
smaller errors (0.43 W/A), whereas the heating rate errors are larger (0.042 K/d). This is consistent
with challenges in the dataset, as the magnitude of incoming shortwave radiation is significantly larger
than for longwave, whereas the heatingegrofiles for longwave radiation are more complex in their
vertical structure. This is demonstrated in the plots below which show sample predictions for
shortwave and longwave processes (Fig. 7 and 8).
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Fig. 7 : Sample profiles of predictions from theellag SW RNN model. Columns indicate different profiles, with
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rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines
coincide almost everywhere, illustrating the high quality of prediction.
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Fig. 8: Sampl profiles of predictions from the leading LW RNN model. Columns indicate different profiles, with
rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines
coincide almost everywhere, illustrating the higlality of prediction.

3.3.4 Code

The code for the longwave training has been added to the benchmark code in the MAELSTROM
Radiation repository,https://git.ecmwf.int/projects/MLEE Triepos/maelstromradiation. Once pip
installed, training can be invoked from the command line with

radiation - benchmarks - Ilw

which runs an example on the tier 1 dataset. Training for the optimal longwave model can besdchie
with
radiation - benchmarks -Iw -- epochs 100 -- tier 2 -- batch 512

3.3.5 Future work

As with the shortwave process, we believe that these errors are low enough to satisfy offline testing.
Over the remainder of the project we will focus on two aspects: Fimstiime testing, i.e. coupling

both solvers simultaneously to the IFS and testing forecast accuracy and stability. Secondly, generating
tangentlinear and adjoint versions of the shortwave and longwave processes. These gradient versions
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of the neural netwok have value within data assimilation, particularly variational approaches such as
4Dvar which seeks to optimise forecast trajectories by propagating gradients through the full
forecasting system. This requires accurate and fast gradient models foroeaghbonent, which
necessitates significant personnel investment to develop and maintain. Currently, the taimgant

YR FR22Ayld Y2RSta F2NJ G6KS LIKe&aAOlrt NIRAFGAGS
version of the radiation scheme. If éhgradient information provided by an automatically
differentiated neural network version of the radiative transfer process is sufficiently accurate, this
would improve the correspondence between forward and gradient models and could significantly
improveinitial conditions and resulting weather forecasts.

3.4 AP4: Improve ensemble predictions in forecastpostessing

Over the past few years, there has been a growing interest in ensembleppuestssing techniques
aimed at enhancing forecasiccuracy. These methods involve adjusting the distribution of output
from ensemble weather prediction models to eliminate biases, a process known as prediction
correction. They play a crucial role in enhancing the overall quality of ensemble forecasts.

Theprimary objective of AP4 is to enhance the performance and reliability of machine ledaseg

models within the context of ensemble pggtocessing, also known as forecast ppetcessing. In
pursuit of this goal, we have taken the initiative to inttmeé the ENS0 (Ashkboos et al., 2022)
dataset. This dataset comprises ten ensemble members, encompassing a time span of two decades,
from 1998 to 2017. Our approach involves the application of various machine learning models to this
extensive dataset, uh the aim of advancing the statef-the-art in ensemble posprocessing
techniques

3.4.1 1/O Bottleneck

In our previous deliverable, D1.3, we conducted an assessment of the effectiveness of implementing
a UNet style model on the ENI® dataset. In this evaluiain, we carefully analysed the time allocation
between forward and backpropagation processes for each batch and epoch. Our findings indicated a
significant bottleneck in the training process due to input/output (I/O) operations. Therefore, it is
evident that any future efforts aimed at enhancing performance should prioritise optimization at this
particular stage of the application.

This deliverable primarily focuses on optimising the overall runtime performance of our model by
addressing a critical aspedhput/output (I/O) operations. As part of our investigation, we have
recognized that the current practice of saving our datasetNietCDFformat and conducting
computations during the data loading phase introduces a substantial I/O overhead that significantly
impacts the efficiency of our neural network training process.

To elaborate, our focus is on streamlining the ¢aebnd executiorof our model, encompassing data
handling and neural network training. A key observation is that the choice of saving the dataset in the
NetCDF format, while beneficial for structured data storage, brings with it the challenge of 1/O
efficiency during theraining phase. When we perform computations-ime-fly during data loading,

it results in increased reading times and consequently slows down the overall training process.
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3.4.2 NumPy and NetCDF Formats

Table 3 illustrates the distinctions between the utilisatmf NetCDF and NumPy formats. In our efforts
to address the I/0O challenges, we are contemplating a potential solution: preprocessing the entire
dataset by performing all necessary computations, such as normalisation and slicing, and

subsequently storinghie resulting data in NumPy format.

Use Case

NetCDF Format

NumPy Format

Data Conversion Ease (to
PyTorch Tensors)

Requires additional steps for
data conversion. PyToraloes
not have builtin support for
direct conversion from NetCD
files, necessitating custom
code or external libraries for
the conversion.

Offers straightforward
conversion as PyTorch
seamlessly supports direct
conversion from NumPy array
usingtorch.from_numpy()

Conversion Speed and
Efficiency

Conversion from NetCDF to
PyTorchensors may involve
reading and copying data,
potentially resulting in
increased conversion times,
especially for large datasets.

Conversion from NumPy array
to PyTorch tensors is generall
efficient, with minimal
overhead, making it suitable
for quick data loading and
model training.

Memory Usage

NetCDF format may involve
reading data into memory,
potentially consuming more
memory during conversion,
especially for large datasets.

NumPy arrays are memory
efficient, and PyTorch can
efficiently create tensrs from
NumPy arrays without
significant memory overhead.

Compression and File Size
Optimization

Offers builtin compression
options for reducing file sizes
while preserving data integrityj

Compression can be applied
externally but requires more
manual onfiguration
compared to NetCDF's buitt
compression.

Data Complexity

Ideal for complex data with
numerous dimensions and
associated metadata, such as
climate data, geospatial data,
and model outputs.

Suitable for a wide range of
numerical data butmay lack
the structure needed for
complex, multidimensional
data.

Table 3: Comparison between data provision using the NetCDF and NumPy format. We fix our I/O issue by saving

the whole ENGO0 dataset in NumPy format and applying the normalizations offline
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3.4.3 Results

To assess the effectiveness of our I/O enhancements, we conducted training experiments utilising the
U-Net network architecture as described in the work by Ashkboos et al. (2022) on thEOEa&set.

Our UNet model consists of three hieraiichl levels, each comprising a sequence of modules,
including convolution, batch normalisation, and ReLU activation functions.

For data input, the network operates on the entire grid and processes data with 22 input dimensions
for surface features and liiput dimensions for volumetric features. This corresponds to two inputs
per variable present in the EN® dataset, facilitating comprehensive data representation. In terms
of network architecture, we employed convolutional layers with 32 output charinetse first level,

64 output channels in the second level, and 128 output channels in the third level ofidet tdodel.

For all experiments, we use a single 40 GB A100 GPU from ETH computing resources using CUDA 11.7
and train our model for three epts. We use PyTorch 2.0.0 to implement our code and run the
experiments. We train each model using three different random seeds and report the mean and
standard deviation. Batch, forward, and backward time was measured usingi@timing.

Metric Min(s) Max(s) Median(s) Mean(s) Std(s)
Epoch 1098.97 1102.71 1101.08 1100.92 1.87
Batch 1058.43 1062.31 1061.08 1060.61 1.98
Forward 26.91 27.94 27.92 27.59 0.59
Backward 12.47 13.09 12.60 12.72 0.32
Table 4: Th8enchmarking results for AP4 using NetCDF format.
Metric Min(s) Max(s) Median(s) Mean(s) Std(s)
Epoch 214.75 226.27 220.20 220.40 5.76
Batch 172.11 183.01 177.28 177.47 5.45
Forward 30.31 30.42 30.33 30.36 0.057
Backward 12.323 12.84 12.56 12.59 0.25

Table 5: Thenchmarking results for AP4 using NumPy format.

Tables 4 and 5 show the results of our experiments using the NetCDF and NumPy formats. We get up
to the 4.9xspeedup by using NumPy data format in our experiments. Specifically, the tiraarof
each epoch is reduced from 1100.92s to 220.4s.
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3.5 APS5: Improve local weather predictions in forecast-postessing

AP5 explores the application of deep neural networks for statistical downscaling of meteorological
fields.

So far, the statisticalavnscaling models have been developed in anendnd approach. This means

that taskspecific neural networks have been trained from scratch using pairs of egeased input

and highresolved target data. However, pairing of input and target data ofit@its the amount of
training samples since both datasets must cover the same time period and region for this purpose. In
the case of the Tier-Bataset, the ERABanalysis, which serves as the coagsained input, provides
global data from 1979 untilear realtime. By contrast, the highesolved targeted COSMO REA6
reanalysis constitutes a regional dataset whose temporal coverage is restricted from Jan 1995 to
August 2019. Thus, large parts of the ERRfghalysis dataset cannot be leveraged duringnira in

an endto-end approach.

Inspired by the recent success of foundation models in natural language processing (see, e.g., Zhou et
al., 2023), we therefore explore the applicability of the lasgale representation model for
atmospheric dynamics AtmeR (Lessig et al., 2023) in scope of this deliverable. AtmoRep constitutes

a taskagnostic generative neural network that is considered to be suitable for a wide range of
meteorological applications and thus represents a foundation model (Bommasanj 2021). By
pretraining the encodedecoder transformer network of AtmoRep on (nearly) the complete ERA5
reanalysis dataset, a powerful abstraction of the atmospheric state can be obtained. This abstraction
can then be exploited when finetuning a taspedfic network extension (encodetecoder of
AtmoRep +tail network) for statistical downscaling.

A compact overview on AtmoRemd its application for statistical downscaling is provided in the
following. For a detailed description of AtmoRep, we refer however to Lessig et al. (2023) and its
comprehensive supplement.

3.5.1 The AtmoRep model and fitiening for downscaling

Mathematically, AtmoRep is built on the description of the atmospheric state as a stochastic
dynamical model (see, e.g., Hasselmann, 1976 and Palmer et al., 2008). With this, the probability for
a statewgiven the input atmospheric sta#eis described & a conditional probability distribution

n «xhi . The input statew can, for instance, be the atmospheric state at time whereasw
represents the atmospheric state at a later timle 0 w0 The atmospheric state is here
complemented by which may provide auxiliary information such as the year information to encode
global climate forcing. Since no analytical description of the highly complex andstagionary
stochastic system is available, AtmoRep makes use of the approximation

r\] ’ \IV h 4 \Iv
where ) «gfi  constitutes an encodedecoder neural network based on Transformer blocks
(Vaswani et al., 2017). As already mentioned, the ERA5 reanalysis tds¢éases as input data,
providing the most accurate, available estimate on the global atmospheric state. Specifically, different
state variables such as the 3D wAmelctor, the temperature or the specific humidity on different

model levels are inputted ithe form of gridded data within local spatieme cubes (e.g. 36h x 5
vertical levels x 1800 km x 1800 km). To learn an abstract representation of the atmospheric dynamics,
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the data cubes are tiled into patches in analogy to tokens in computer vision (B&$pet al., 2020).
During training, a random subset of the tokens gets masked or distorted and the erdectmler
network is asked to reconstruct these tokens. This strategy ofsseirvised training is inspired by
the BERT training strategy suggesie Devlin et al., 2018. Here, high masking ratios have been found
to promote learning of robust representations.

AtmoRep thereby constitutes a probabilistic model by outputting an ensemble for the intrinsically
uncertain dependant statex A novel stastical ensemble loss that measures the distance between
the (deterministic) ground truth data and the probabilistic prediction with the help of a Gaussian fit is
used as a training objective combined with the usual MSE. A conceptual illustration otrAoRep

is provided in Figure 9.

For efficiency reasons and for the sake of a modular model design, thegimang is performed as a
two-step approach. At first, state variabdpecific encodedecoder networks (Singleformers) are
trained individually urit convergence, i.ab and ware just expressed by a single variable on multiple
levels in the Singleformers. Second, different variables are coupled together viaattergon
between the variablespecific Transformer layers of the encoder and ftiragnof the resulting
Multiformer is continued to obtain a more complete abstraction of the atmospheric dynamics. This
approach has the advantage of saving computation time, since the optimization converges quickly in
the latter step, while the crosattention operations scale quadratically as opposed to the-self
attentions. Furthermore, taskpecific configurations with different variables become possible
through the twastep training approach and the modular design.

For the downscaling task, the horizohtgind vector components as well as the temperature on model
levels 137, 123, 114, 105 and 96 are used since this information is considered to be the most relevant
for the subsequent downscaling of the 2m temperature field. The Singleformers of the gmiables

have been trained individually on 8 nodes (32 GPUs) of Juwels Booster for several days. Subsequently,
the Multiformer is trained, before AtmoRep gets extended with a tsé#cific tail network for
downscaling. The tail network comprises 6 tramsfer blocks consisting of transformer layers with

16 attention heads and two multilayer perceptrons. To increase the spatial resolution of the data, the

2dzii Lddzi G21Sya 2F !'iGy2wsSLiQa RSO2RSNJ 38§ AyONBLas

of tokens also require embedding (linear layer) with an updated local positional encoding, while the
embedding dimension also gets doubled. In contrast to the three Singleformers and the Multiformer
only data from model level 137 is used in the finaing step.

During finetuning, the parameters of the encodelecoder as well as the tail network are optimised,
resulting in about 1.85 billion trainable parameters. Model parallelism is required to fit the network

on the computing nodes of Juwels Booster, where tifree state variablspecific transformers and
the tail network are placed on one GPU each. The finetuning is run for three days on eight nodes.
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Fig. 9: lllustration of the seffupervised training of AtmoRep. Local sptice data cubes of state viables are
sampled and then tailed into tokens of which a random subset gets masked. AtmoRep then reconstructs the data
of the masked tokens with an ensemble prediction. The statistical loss is then used for optimization.

3.5.2 Dataset

While the pretrainingof the Singleformers and the Multiformer are solely performed with the global
ERASeanalysis dataset (from 1979 to 2017), the subsequent finetuning requires pairing with the
COSMO REAG6 dataset. Contrarily to the-Zidataset used in previous deliverab) the underlying
shared grid projection of the data is changed from the rotated pole grid of the COSM@IRBESE

to the regular (lat, lonrid onto which the ERAS reanalysis is provided. The input-BE&A%s defined

on a 0.259rid, while the COSMREA&data is remapped on a 0.062§fid following the procedure
described in deliverable 1.1.

temperature (t) 96***, 105***, 114**  ERAS (0.25°) Input
123***’ 137***
u-wind (u) 96**, 105**, 114**, ERAS5 (0.25°) Input
123**, 137***
v-wind (v) 96**, 105**, 114**, ERAS5 (0.25°) Inout
123**, 137***
surface geopotential (z2)* - ERAS5 (0.25°) Input
2mtemperature (t_2m) - COSMO REAG6 (0.0625° Output
surface topography (hsurf)* - COSMO REA6 (0.0625°¢ Input/Output

Table 6: Overview of input and output variables used for the 2m temperature downscaling task. Variables
denoted with * served as auxiliary input/output variables for the competing WGAN. Data on model levels

D14 Revisions of customised ML solutions for enhanced datasets 28



