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Figure 2: Example input fields (upper row) and fields provided by the upsampling layer in Level 6 (lower row) 

for the U-Net model for a 512x512 patch covering Denmark and southern Norway and Sweden. The first 6 
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Figure 4: An example forecast for 13:00Z on September 16, 2023 made using the final U-Net model. The map 
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Right: ROC curve for the same model. While the majority of Tweets is correctly classified, further analysis on 

misclassified Tweets identified the lack of relevant information in the text to make a correct judgement as the 
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Figure 6:  Mean-squared-error (MSE) performance on test dataset for longwave fluxes (left) and longwave 

heating-rates (right), comparing model designs featuring GRU-type RNNs and LSTM-type RNNs. LSTMs reduced 

errors for both fluxes and heating rates by approximately 10%......................22 

Figure 7: Sample profiles of predictions from the leading SW RNN model. Columns indicate different profiles, 

with rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines 

coincide almost everywhere, illusǘǊŀǘƛƴƎ ǘƘŜ ƘƛƎƘ ǉǳŀƭƛǘȅ ƻŦ ǇǊŜŘƛŎǘƛƻƴΦΧΧΧΦнн 

Figure 8: Sample profiles of predictions from the leading LW RNN model. Columns indicate different profiles, 

with rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines 
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Figure 9: Illustration of the self-supervised training of AtmoRep. Local space-time data cubes of state variables 

are sampled and then tailed into tokens of which a random subset gets masked. AtmoRep then reconstructs 

the data of the masked tokens with an ensemble prediction. The statistical loss is then used for 
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Figure 10: Target domain of the AtmoRep downscaling application. The surface topography in metres above 
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Figure 11: Diurnal cycle of the RMSE (left) and the gradient ratio (right) as averaged over the test year 2018 
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Figure 12: Power spectrum of the 2m temperature field from the COSMO REA6 ground-truth data (blue line) 

and the downscaled product of AtmoRep (green line). The spectra are averaged over the whole test year. 
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Figure 13: As Figure 11, but joint evaluation of results obtained with AtmoRep (blue) and the WGAN 
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1 Executive Summary 

This deliverable provides the description of the updated machine learning solutions for the 

MAELSTROM applications that have been developed based on the enhanced benchmark datasets 

described in Deliverable 1.2 and 1.3 (D1.2 and D1.3). A general overview on the progress and a 

discussion of deviations from the proposal is provided in Section 2. There has been no change of plans 

for the application development and, overall, the work on the MAELSTROM applications is developing 

nicely (see detailed presentation in Section 3). However, MAELSTROM has supported two more 

application areas ς the development of full machine learned weather forecast models and the 

development of Foundation Models for weather and climate applications ς as both areas have shown 

very fast developments and significant impact in the last two years and as they are very interesting for 

a!9[{¢whaΩǎ Ŏƻ-design approach as the developed tools are very data and compute intensive. 

Finally, Section 4 is presenting an example of how the Mantik tool, developed in work package 2, can 

be used for the developments of machine learning applications. Application 2 (AP2) from the set of 

MAELSTROM applications serves as an example here. 
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2 Introduction 

2.1 About MAELSTROM 

¢ƻ ŘŜǾŜƭƻǇ 9ǳǊƻǇŜΩǎ ŎƻƳǇǳǘŜǊ ŀǊŎƘƛǘŜŎǘǳǊŜ ƻŦ ǘƘŜ ŦǳǘǳǊŜΣ a!9[{¢wha ǿƛƭƭ Ŏƻ-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and solution 

accuracy. Customised compute systems will be designed that are optimised for application needs to 

ǎǘǊŜƴƎǘƘŜƴ 9ǳǊƻǇŜΩǎ ƘƛƎƘ-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward needs of weather and climate 

applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with compute system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the workflow 

of weather and climate predictions including the processing of observations, the assimilation of 

observations to generate initial and reference conditions, model simulations, as well as post-

processing of model data and the development of forecast products. For each application, benchmark 

datasets with up to 10 terabytes of data will be published online for training and machine learning 

tool-developments at the scale of the fastest supercomputers in the world. MAELSTROM machine 

learning solutions will serve as a blueprint for a wide range of machine learning applications on 

supercomputers in the future. 

 

2.2 Scope of this deliverable 

 

2.2.1 Objectives and work performed in this deliverable 

To close the MAELSTROM co-design cycle between application, software and hardware developments 

and Work Package 1, 2 and 3 for the second time, this deliverable provides an update on the 

developments of the MAELSTROM applications. The progress that has been achieved is documented 

per MAELSTROM application in Section 3. The developments are based on the hardware benchmarks 

that were performed in Work Package 3 (see D3.4 and D3.6) and some of the applications are also 

already making active use of the software tools of Work Package 2 (see D2.3 and D2.4) as documented 

for AP2 in Section 4.  
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2.2.2 Deviations and counter measures 

Two developments have recently changed how machine learning will impact the weather and climate 

domain in the medium and longer term future that were not foreseeable during the writing phase of 

the MAELSTROM proposal.  

The first development is the great success of entire weather prediction systems based on machine 

learning that are (yet) trained from the ERA5 reanalysis dataset. The models are now showing a level 

of quality that is beating scores for deterministic weather predictions of conventional models, 

therefore challenging the entire way of how numerical weather prediction is formed. Big technology 

companies such as Google/Deepmind, NVIDIA, Huawei and Microsoft are building their own model 

configurations. The MAELSTROM applications are in general following a slightly different motivation 

when compared to the full machine learning weather forecast models as they advance conventional 

models with machine learning in a hybrid machine learning / conventional approach, for example via 

post-processing or via the emulation of model components. The new machine-learned weather 

models do not make the MAELSTROM applications obsolete as hybrid approaches for numerical 

weather prediction will still play a very important role for the future of numerical weather predictions. 

Therefore, the development of the six MAELSTROM applications have proceeded and the results are 

documented below. However, MAELSTROM has embraced the new developments supporting the 

evaluation and comparability of machine learned weather forecast models. The level of support is 

ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ a!9[{¢whaΩǎ ƛŘŜƻƭƻƎȅ ǘƻ ƳŀƪŜ ƳŀŎhine-learned approaches more comparable. Two 

publications have been supported by MAELSTROM in this context.  

Ben-Bouallegue et al. 2023 is performing a detailed evaluation to understand how the Pangu Weather 

machine learning model that was developed in Bi et al. 2023 compares to results from conventional 

weather models. This is important as the new models use very different concepts for numerical 

discretisation and time stepping techniques, and as weather predictions need to be trustable to be 

useful with a good understanding of limits in predictability that cannot easily be derived from 

deterministic forecast scores. 

Rasp et al. 2023 is publishing a new benchmarking framework for pure machine learning models that 

provides access to training data and a detailed comparison of diagnostics to provide a fair comparison 

of results for different machine-learned weather forecast models. The paper provides a new baseline 

for model comparisons and follows the concept of MAELSTROM as large datasets are made available 

to the public for download with easy access facilitated by notebooks. 

To engage with the pure machine learning model developments was also important for MAELSTROM 

as the developed models are among the largest machine learning tools that are currently developed 

in the weather and climate domains. Both in terms of data but even more importantly in terms of 

parallel training. 

The second development was the move towards machine learning foundation models in many 

domains. These models are very large machine learning applications that follow a different philosophy 

when compared to machine-learned tools trained for a specific application, as they use semi-

supervised training to learn the basic features and connectivity of the data in a pretraining step. In a 

second step, the learned abstraction of the data can be used for fine-tuning for specific tasks and 

applications.  This approach leads to tools that are more generic compared to tools from direct 
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supervised training. Furthermore, foundation models often provide better results when compared to 

specific tools for applications in many domains, and in particular for large language models.  

The domain of weather and climate is starting to test whether foundation models can be useful for 

weather and climate applications and, if successful, foundation models may lead to yet another step-

change in the quality of machine learning tools. The approach is of particular interest for MAELSTROM 

as the resulting models need very large scale training data sets and large-scale machine-learned 

models that need significant high performance compute power to be trained. MAELSTROM has 

therefore supported one of the first approaches to build a foundation model for weather and climate 

science, called AtmoRep (Lessig et al. 2023), and AtmoRep is now also tested for use in Application 5 

(see Section 3.5). 
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3 Update on Advanced Machine Learning solutions for the six 

applications 

3.1 AP1: Blend citizen observations and numerical weather forecasts 

The goal of AP1 is to produce high resolution (1x1 km) hourly temperature forecasts with a lead time 

of up to 58 hours for the Nordic countries, using NWP forecasts as inputs and recent conditions as 

estimated by citizen observations. In the context of the recent developments in purely data-driven 

forecasting, this application is a hybrid approach, leveraging both conventional post-processing of 

NWP output and including information from a starting state based on available observations that the 

ML-model can propagate forward in time. 

The aim of this deliverable is to fine-tune the configuration of the U-Net (Fig. 1) in order to improve 

its predictive accuracy and make it ready for operational use at MET-Norway. The U-Net model was 

the most promising of the architectures studied in Deliverable 1.3 (D1.3). In the previous deliverable 

on scientific testing (D1.3), we noted that the data loading pipeline needed to be improved to allow 

for extensive testing of the model. A major outcome of the co-design loop with WP2 and WP3 was a 

much improved data processing pipeline. The work, culminating in D3.6, resulted in an improvement 

in the average processing performance from 0.42 GB/s (in D1.3) to 3.2 GB/s. This was a result of better 

exploitation of hardware resources, including CPUs, GPUs, and memory. More details on these 

improvements are documented in D2.4. We use these gains to greatly reduce the cost of training a 

suitable model. 

 

Fig. 1: Schematic diagram of the U-Net used in this application. 

 

3.1.1 Dataset 

The dataset has not changed significantly since D1.3. The dataset is still 6TB and contains the same 

predictors (14). The main change is that lead time-independent predictors are placed in a separate 

variable that does not contain the lead time dimension. This was done to make the dataset more 

intuitive for others to use. 
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The full dataset has two years of daily files. We use the first year (2020-03 to 2021-02) as the training 

dataset, where 24 files have been reserved for validation. We use the remaining time period (2021-03 

to 2022-02) for final testing. 

As the U-Net can introduce artefacts near the borders of the domain it is applied on, we removed a 

band of 32 pixels in width around the border when computing the loss function. This was done in 

training, validation, and testing. 

3.1.2 Iterating towards a working U-Net model 

We spent a significant effort getting a basic configuration of the U-Net model to work properly with 

our data. Early attempts appeared to give good validation scores with realistically looking output 

fields. However, we determined that this was noǘ ŀ ǊŜǎǳƭǘ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ŀōƛƭƛǘȅ ǘƻ ŎŀǇǘǳǊŜ ǎƛƎƴŀƭǎ ŀǘ 

different spatial scales. All value was provided by the skip-connections on the top level and the lower 

levels did not provide any fields that impacted the final output fields. Our complex U-Net was 

effectively just a simple convolutional neural network. We checked this by plotting examples of 

tensors as it passed through the different levels in the network and noted that the final upsample 

fields (between level 2 and level1) were all 0. 

We believe this problem is caused by the ReLU activation layers, which sets negative inputs to 0 and 

keeps positive inputs unchanged. Under certain conditions, these units can go dormant failing to 

provide a gradient that helps the network learn new features. This is referred to as the "dying ReLU" 

problem. We noticed that as the training progressed, more and more ReLU units died. We also tested 

exponential linear units, but this gave similar problems, possibly due to vanishing gradients when input 

values are very negative. We found that leaky ReLU activation layers solve this problem. With this type 

of activation, we got coarse grained fields as shown in Fig. 2. 

 

Fig. 2: Example input fields (upper row) and fields provided by the upsampling layer in Level 6 (lower row) for 

the U-Net model for a 512x512 patch covering Denmark and southern Norway and Sweden. The first 6 fields for 

each type are shown. 

 

Leaky ReLU caused exploding gradients. This was solved by limiting the L2 norm of the gradients to 1, 

which is easily implemented by providing an argument to the Adam optimizer in Keras. This does, 
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however, come with a sizable performance hit (on the order of 20%). We did not investigate how to 

mitigate this performance hit. 

We also investigated batch normalisation, which is commonly used in U-Nets after each convolution 

layer, but before the activation layer. This did not lead to stable results for us. We used 

BatchNormalization in Keras, which computes running mean and variance of the inputs to the layer. 

We tested different values of momentum (which governs how fast values are adapted). We suspect 

that part of the problem is that the batches we provide are not large enough and do not contain 

samples that are sufficiently random. Our data loader is not designed to give a completely random 

sample in each batch. It is possible that due to this, there is a coordinate shift throughout the epoch 

and that the batch normalisation keeps lagging behind. 

In addition, we tested different methods for splitting the dataset into chunks that are used by each 

Horovod process. Each process computes the gradient of a given batch of data, and the gradients are 

averaged. By splitting the dataset such that each process gets 3 consecutive months of data, we  

ensure that all seasons are represented each time a batch is processed. We believe this should lead 

to faster learning. 

After a lot of trial and error, we came up with a basic U-Net model with the following configuration: 

 6 levels 

 1x1 convolution size 

 Splitting the whole domain into patches of size 512x512 

 Batch size 1 

 16 features on level 1 

 Feature factor of 2 (the factor increase in number of features as you increase the level) 

 2x2 max pooling 

 Leaky ReLU activation after each convolution 

 2x2 nearest neighbour upsampling 

 Cosine decay restarts learning rate schedule, initial learning rate 1.0e-3 

 Include extra static predictors: forecast lead time, x/y spatial coordinates 

This configuration has 1,314,019 trainable parameters. 

3.1.3 Hyper-parameter tuning 

We tested different settings of the basic U-Net configuration. The hyper-parameter space is quite large 

and we cannot test every combination. We therefore perturb some of the hyper-parameters of this 

model, one at a time to see the effect of each parameter (Table 1). 

 

 

 

Hyper-parameter Basic configuration Alternative configuration 

Pooling operator Max Average 
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Number of levels 
Pooling size 

6 
2x2 

3 
4x4 

Feature ratio 2 1 

Convolution size 1x1 3x3 

Table 1: List of hyper-parameters that were tested. 

We used the Juelich Benchmarking Environment (JUBE) to organise the hyper-parameter tuning. This 

is similar to what we did in D3.6 with testing different hardware and data processing settings. We 

scheduled the jobs on a single JUWELS Booster node, performing distributed training on 4 Nvidia A100 

GPUs. 

Each training run traverses the training dataset three times. We computed the validation score f 30 

times throughout the training period and stored the best performing weights. This model state was 

then used for final testing. 

One important aspect of AP1 is its high resolution grid (1x1km). This means we need many levels in 

the U-Net to ensure a broad receptive field. However, this leads to many parameters. For example, a 

6 level U-Net has over 1 million parameters. We therefore tested a U-Net model where the 

downsampling ratio is 4 instead of 2. Then, we can get the same receptive field with 3 levels as with 6 

levels. We also changed the 3x3 convolution to a 1x1 convolution. 

Because the basis for the input data source (2.5km) differs from the final output grid (1km), there is 

an elevation difference that can trivially be corrected for. We created a benchmark model that copied 

the raw forecasts and allowed for an elevation correction with a trainable constant lapse rate. This 

was trained to be 7.39°C/km. 

We ran each configuration three times and averaged their test loss. 

Description Parameters Test loss Improvement 

Raw elevation corrected model 1 0.2495 0.0 % 

Basic configuration 1,314,019 0.2170 13.0% 

Fewer features (feature ratio 1) 13,891 0.2170 13.0% 

Mean pooling instead of max pooling 1,314,019 0.2139 14.3% 

Fewer levels (3), bigger downsampling ratio (4) 20,195 0.2174 12.9% 

Bigger convolution stencil (3x3) 9,000,291 0.2193 12.1% 

Table 2: The improvement column shows the fractional decrease in test loss relative to the raw elevation 

corrected model. 

These results indicate that all models performed quite well, leading to improvements over the raw 

elevation-corrected forecast. The main tuning benefit was to replace the max pooling layer with a 

mean pooling layer, leading to a further 1.3% improvement. Max pooling is often used to find well-
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defined edges in images and it is possible that in this application, large scale averages provide more 

relevant signals. The other tuning efforts did not lead to any improvement over the basic 

configuration. 

3.1.4 Assessing the impact of predictor variables 

The input data set contains a wealth of predictors. For operational implementation, including extra 

variables causes several challenges. Firstly, they can slow down production because the features can 

be expensive to extract from the input model data. Secondly, they make the model more vulnerable 

to changes in the NWP model. The physics routines in the NWP model we use are tuned over time. 

Including a greater number of variables increases the risk of inconsistency between the training 

dataset and the data used in operations. We therefore want to make sure that the input variables do 

provide added value. 

To do this, we trained the final U-Net model on different subsets of the parameters. In one 

experiment, we used only the temperature variables (and static predictors such as altitude, lead time, 

and x/y coordinates). In the other configuration, we added on the two bias variables (recent bias and 

ȅŜǎǘŜǊŘŀȅΩǎ ōƛŀǎύΦ wŜǎǳƭǘǎ ƛƴŘƛŎŀǘŜ ǘƘŀǘ ǇŜǊŦƻǊƳŀƴŎŜ ƛǎ ƎǊŜŀǘƭȅ ǊŜŘǳŎŜŘ ǿƘŜƴ ǘƘŜ ǘǿƻ ōƛŀǎ ǾŀǊƛŀōƭŜǎ 

were omitted (Fig. 3). We also note a reduction in performance when the non-temperature and bias 

related variables were omitted (difference between black and blue line). Thus, winds, precipitation, 

and clouds also provide added value to our model, though to a lesser extent than the bias predictors. 

 

Fig. 3: Test loss against forecast lead time for models trained with varying sets of predictors.  

 

 

3.1.5 Operationalization of model and future work 

We have worked extensively on integrating the data processing pipeline and the U-Net model into 

a9¢ bƻǊǿŀȅΩǎ ƻǇŜǊŀǘƛƻƴŀƭ forecasting system. We also performed a long training run using all 

available data (by merging the training and testing datasets) to create a trained model that we will use 

in production. The operational code is working and we produced a first test forecast (Fig. 4). 



 

MAELSTROM 2023 

 

 

D1.4 Revisions of customised ML solutions for enhanced datasets      16 

The next step is to perform some internal evaluation of the forecasts at MET-Norway, followed by a 

launch of the improved product on our weather app Yr (https://www.yr.no). 

 

Fig. 4: An example forecast for 13:00Z on September 16, 2023 made using the final U-Net model. The map shows 

the 50th percentile forecast for the southern half of the domain. 

 

3.1.6 Data and Code access 

The training and testing code is available on https://github.com/metno/maelstrom-train, as in 

previous deliverables. The JUBE configuration for the scientific tests is found in jube/d1-4.yml. 

3.2 AP2: Incorporate social media data into the prediction framework 

Posts ons social media may provide relevant information about the current state of the weather at 

the location of the user. This application aims to harvest this information to improve weather 

predictions. For this, information related to weather needs to be extracted from a rather unstructured 

and unreliable data source. As a test balloon, we are developing a model that can determine from the 

text of a Tweet whether it was raining at the location and time at which the Tweet was sent. Our initial 

implementation was presented in Deliverable 1.3 (D1.3). Since then, we mainly focused on improving 

our training dataset. In addition, we added a new dataset based on precipitation data collected from 

weather stations, which improves our evaluation robustness. Finally, we give an outlook to planned 

improvements to our model. 

3.2.1 Dataset 

We use historical English Tweets from 2017-2020 that include keywords related to the presence of 

ǊŀƛƴΣ ŜΦƎΦΣ άǊŀƛƴέΣ άǎǳƴƴȅέ ƻǊ άŘǊƛȊȊƭŜΦέ ²Ŝ focus on Tweets sent from an identifiable location in the UK, 

which is required to map the Tweet to the precipitation dataset (see D1.3 for more details). Tweets 

Ƴŀȅ ōŜ ƭƛƴƪŜŘ ǘƻ ǾŀǊƛƻǳǎ ƎŜƻƎǊŀǇƘƛŎŀƭ ǊŜƎƛƻƴǎ όǘŀƎƎŜŘύΣ ŜΦƎΦ ά9ƴƎƭŀƴŘέΣ ά[ƻƴŘƻƴέ ŀƴŘκƻǊ ά¢ƘŜ .ritish 

https://github.com/metno/maelstrom-train
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aǳǎŜǳƳέΦ ¢ƻ ŎƻƴŦƛŘŜƴǘƭȅ ƳŀǇ ¢ǿŜŜǘǎ ǘƻ ǇǊŜŎƛǇƛǘŀǘƛƻƴ ǾŀƭǳŜǎΣ ǿŜ ǊŜǉǳƛǊŜ ǘƘŜ ǎƳŀƭƭŜǎǘ ǘŀƎƎŜŘ ǊŜƎƛƻƴ 

to have an area at the resolution of the precipitation data (100 km²).  

When trying to improve on our initial model, we realised that a major bottleneck for the model is data 

quality. Some Tweets clearly stated that it was raining when the precipitation data implied that it was 

not raining and vice versa. We therefore decided to move to ERA5-land (see below) as it incorporates 

measurement values to boost accuracy. 

In addition, we build a dataset based purely on precipitation measurements from weather stations. 

For this, we use MIDAS Open (Met Office 2019), which provides hourly weather measurements from 

public weather stations in the UK from 1853 to present. We only include Tweets within 1 km of the 

ǿŜŀǘƘŜǊ ǎǘŀǘƛƻƴ ǘƻ ŦƻǎǘŜǊ Řŀǘŀ ǉǳŀƭƛǘȅΦ ¢Ƙƛǎ ƭŜŀǾŜǎ ǳǎ опY ¢ǿŜŜǘǎ ǿƛǘƘ пY ¢ǿŜŜǘǎ ƭŀōŜƭƭŜŘ ŀǎ έǊŀƛƴƛƴƎέΣ 

which is insufficient to train our model. However, we use this dataset as a final holdout dataset to 

evaluate our model performance. 

tǊŜŎƛǇƛǘŀǘƛƻƴ Řŀǘŀ ǿŜǊŜ ŀǎǎƛƎƴŜŘ ǘƻ ǘƘŜ ƴŜŀǊŜǎǘ ¢ǿŜŜǘǎΦ ¢ǿŜŜǘǎ ǿŜǊŜ ŀǎǎƛƎƴŜŘ ǘƘŜ ƭŀōŜƭ άǊŀƛƴƛƴƎέ ƛŦ 

total precipitation ὴ was larger than a threshold value ὴ , i.e. ὴ ὴ . We set ὴ

πȢππ7 ά as default. In our previous model, the threshold was set at the noise level of the simulation, 

which is much lower. However, further evaluation showed that we clearly over-estimated the 

presence of rain with this approach as the weather model will have larger inaccuracies at these low 

levels of rain. In addition, depending on the region users will probably be more sensitive to the 

presence of rain and a faint drizzle even if correctly predicted will not necessarily be considered 

άǊŀƛƴƛƴƎέ ōȅ Ƴƻǎǘ ǳǎŜǊǎΦ  

For precipitation data, we originally used ECMWF-IFS, but now moved to ERA5-land (Muñoz Sabater 

2019), which has a spatial resolution of 0.1 deg and hourly resolution, which is comparable to the 

resolution of ECMW-IFS. However ERA5-land is a re-analysis dataset, which incorporates 

measurements to boost accuracy. The resulting training dataset contains 500K Tweets labelled as 

άǊŀƛƴƛƴƎέ ŀƴŘ тллY ¢ǿŜŜǘǎ ƭŀōŜƭƭŜŘ ŀǎ άƴƻǘ ǊŀƛƴƛƴƎέΦ  

 

3.2.2 Model 

hǳǊ ǘŀǎƪ ƛǎ ǘƻ ǇǊŜŘƛŎǘ ǘƘŜ ƭŀōŜƭǎ άǊŀƛƴƛƴƎέ ƻǊ άƴƻǘ ǊŀƛƴƛƴƎέ ŦǊƻƳ ǘƘŜ ǘŜȄǘ ƻŦ Tweets. This can be reduced 

to the task of sequence classification, which is a common problem in natural language processing. 

Deep learning models based on the popular transformer architecture (Vaswani et al., 2017) deliver 

state of the art results in this domain (Kowsari et al. 2019). We use the transformer based DeBERTa 

architecture. Here, we use the pre-trained variant DeBERTaV3_small (see D1.2 for further details). As 

our data quality seemed to be the main bottleneck, we kept our model architecture unchanged and 

rather focused on improving our dataset and model evaluation. However, due to the benchmarks 

performed in D3.6, we noticed that while scaling on 4 GPUs compared to 1 GPU is less than ideal, 

energy consumption is still more efficient as the remaining 3 GPUs still require significant power in 

their idle state. We therefore always train on 4 GPUs now. In addition, we realised that while 

evaluation only takes 30 seconds for 50k Tweets, changing to a different architecture like a large 

language model (LLM) based architecture may incur considerable bottlenecks when running 
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predictions. Additional analysis performed for D3.6 gave us confidence in the performance of our 

model as it appears highly optimised, which allowed us to focus more time on improving our dataset. 

 

3.2.3 Results 

Our best model achieves an f1-score on the evaluation set based on ERA5-ƭŀƴŘ ƻŦ лΦтп όάƴƻǘ ǊŀƛƴƛƴƎέύ 

ŀƴŘ лΦсп όάǊŀƛƴƛƴƎέύΦ ¢Ƙƛǎ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ŀƴ !¦/ ƻŦ лΦтуΣ ǿƘƛŎƘ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ŀ ǎƭƛƎƘǘ ƛƳǇǊƻǾŜƳŜƴǘ 

to our previous model (Fig. 5). It appears that the increase in accuracy of precipitation for our new 

dataset improved model performance. However, it is apparently not the main bottleneck for the 

model. Further analysis revealed  instead that the information contained in a significant fraction of 

Tweets is not sufficient for a human to correctly classify these Tweets. Just matching by keywords 

appears therefore insufficient for selecting relevant Tweets. 

 

Fig. 5: Left: Confusion matrix of our best model for the classification of Tweets aǎ άǊŀƛƴƛƴƎέ ƻǊ άƴƻǘ ǊŀƛƴƛƴƎέΦ wƛƎƘǘΥ 

ROC curve for the same model. While the majority of Tweets is correctly classified, further analysis on 

misclassified Tweets identified the lack of relevant information in the text to make a correct judgement as the 

main source of error. 

 

3.2.4 Future work 

A major challenge for this application is selecting Tweets that contain sufficient information to make 

the statement about the presence of rain or generally about the state of the weather. Currently, we 

filter out Tweets based on keywords. However, keywords can be ambiguous like the British newspaper 

Sun, which led us to introduce hand-crafted rules to filter out Tweets with the case-sensitive keyword 

ά{ǳƴέΣ ǿƘƛŎƘ ƛǎ ǊŀǘƘŜǊ ƛƴŎƻƳǇƭŜǘŜΦ LƴǎǘŜŀŘΣ ǿŜ ǿƻǳƭŘ ƭƛƪŜ ǘƻ ǳǎŜ ŀ ƳƻŘŜƭ ǘƘat predicts the relevance 

of the Tweet for our specific task. 

Large language models like ChatGPT (OpenAI 2023) or alternative open source solutions like Falcon 

180B (Schmid et al. 2023) provide a new paradigm in the NLP community. Initial manual testing gave 

promising results that demonstrated that LLMs can potentially help with this complex task. However, 

a major challenge appears to be speeding up the evaluation process as potentially a stream of Tweets 

needs to be processed from which relevant Tweets are selected. We therefore plan to finetune an 

LLM specifically for our task, which should improve performance. 
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3.3 AP3: Build neural network emulators to speed-up weather forecast models and 

data assimilation 

AP3 concerns the emulation of radiative transfer with machine learning. The motivation is the 

acceleration through both compression via machine learning and easy use of GPU infrastructure. In 

previous deliverables, we focussed on shortwave (SW) radiation, where the sun is the primary source. 

We designed a bespoke physics-informed neural network whose architecture mimicked the 

conventional physics-based solver. This network belongs to the family of recurrent neural networks 

(RNN), here recurrent through the vertical structure of the atmosphere. Leveraging this solution, and 

training on the large dataset provided through MAELSTROM, we were able to train highly accurate 

emulators of the ECMWF ecRAD Triplecloud solver for the shortwave process. These exhibited RMSE 

errors of 0.50 W/m2 for the fluxes and 0.014 K/d for the heating rates on an independent in time test 

dataset. In consultation with domain experts, it was decided that this error was sufficiently low to 

consider the emulation successful, at least from the perspective of offline errors, i.e. errors when 

running the radiative transfer solver decoupled from the weather forecasting model. 

  

Our focus in the time since the last deliverable has been on the longwave (LW) process for radiative 

transfer. In combination with shortwave radiation processes, this complements the radiative transfer 

task. Longwave emissions primarily originate at the surface, with it being key to identify: how much is 

reflected back from the atmosphere to be reabsorbed by the surface, how much is emitted and 

absorbed by the atmosphere, and how much flux propagates through the top of the atmosphere. 

 

3.3.1 Data 

For this phase of reporting, we continue using the same dataset as described previously, as this was 

found to be sufficiently accurate for learning the shortwave process. The dataset contains data for 

both shortwave and longwave processes. These can be accessed from the maelstrom -

radiation - tf  CliMetLab dataset using the subset = ñtier-2ò argument. The corresponding 

dataset comprises 21,640,960 examples. This is to be contrasted with the Tier 1 dataset which 

contained only 67,840 examples. We also introduced previously Tier 2 subsets for validation and 

testing, accessible with ñtier- 2-valò and ñtier- 2-testò. Each of these contain 407,040 

columns from 2019 (training data are taken from 2020). Here, we will present results on the Tier 2 

data. 

 

3.3.2 Methodology  

Given the success of recurrent neural networks for the shortwave process, we focus our attention on 

adapting this solution to the new problem. As the dominant source is the surface, we change the 

structure of the RNNs. Scalar surface quantities are passed to a 2-layer multi-layer perceptron (MLP) 

enabling the model to process surface quantities. The output of this MLP is provided as an input state 

to an RNN which is oriented to propagate vertically up the atmospheric column. At each layer, the 

RNN receives the ǇǊŜǾƛƻǳǎ ƭŀȅŜǊǎΩ ƘƛŘŘŜƴ ǎǘŀǘŜ ŀƴŘ ǘƘŜ ŦƻǊŎƛƴƎ ƛǎ ǇǊƻǾƛŘŜŘ ōȅ ŀǘƳƻǎǇƘŜǊƛŎ ǎǘŀǘŜ 

variables corresponding to this layer of the atmosphere. This RNN propagates information from the 
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surface up through the atmospheric column, incorporating information on the state of the  

 

atmosphere (e.g. temperature, humidity pressure) at each layer. This is followed by a second RNN, 

which propagates down the atmospheric column, initialised with the final hidden state of the upward-

propagating and is forced with the output state from the upwards RNN at each layer. The second RNN 

enables the propagation of reflectances back down the column all the way to the surface. The output 

at each layer from both RNNs is concatenated together and passed through a single MLP, with shared 

weights for all vertical layers, which is applied to each layer separately and  calculates a normalised 

flux profile (i.e. two components downwards and upwards fluxes). For the SW process, fluxes at the 

end of the model are scaled by the incoming solar radiation, which simplifies the task for the rest of 

the network to only calculating relative fluxes. We adopt this approach for LW, but here the scaling 

factor is not known a-priori, but depends on surface properties. We use a 2-layer MLP to calculate this 

scaling factor and multiply the downwards and upwards flux profiles by this prediction. Finally, again 

based on the success from the SW application, we use the custom physics-informed layer which 

calculates the heating rates from the fluxes. This final step does not add further trainable parameters 

and the formulation can be found in D1.3.  

We test two different RNN blocks, the simpler Gated Recurrent Unit (GRU) and the more complex 

Long Short-Term Memory (LSTM). We fix a hidden state of 64 neurons for each MLP and RNN in the 

model, having found this to be sufficiently large on preliminary testing. The GRU-based model has 

45,221 trainable parameters and the LSTM-based model has 60,261 trainable parameters. As with the 

shortwave process, we produce a highly parameter efficient model in contrast to recent publications 

using only MLP or convolutional neural networks which use on the order of million parameters 

(Lagerquist et al. 2021, Yao et al. 2023). 

Exploratory testing was also carried out to test the suitability of other architectures for learning 

accurate emulators. Specifically we tested convolutional neural networks, using dilated convolutions 

to increase the speed of propagation through the vertical column. Also tested were networks using 

the self-attention mechanism that powers transformer architectures. None of the probed models 

attained the accuracy of the RNNs as shown in Figure 6. 

We minimise the Huber loss, which acts as the mean-absolute-error for values greater than 1 and as 

the mean-squared-error for values less than 1. This was found to result in more accurate models, 

measured by RMSE, even compared with training directly on RMSE. To combine the loss of two 

objectives, we use a weighting of 1 for the fluxes and 100 for the heating rates. 

Training was carried out with a batch size of 512, the Adam optimiser, an initial learning rate of 0.001 

which decreases if validation scores fail to improve after 4 epochs. Early stopping if scores on the 

validation dataset failed to improve after 6 epochs was also used. Training was carried out on a single 

NVIDIA A100-40Gb GPU, since larger batch sizes using data-distributed parallel training did not 

improve the time-to-solution for the application at hand as shown in previous deliverables. An optimal 

solution was reached in approximately 24 hours. 
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Fig. 6: Mean-squared-error (MSE) performance on test dataset for longwave fluxes (left) and longwave 

heating-rates (right), comparing model designs featuring GRU-type RNNs and LSTM-type RNNs. LSTMs reduced 

errors for both fluxes and heating rates by approximately 10%. 

 

3.3.3 Results  

Compared to the shortwave solver, where our leading solution attained an RMSE of 0.50 W/m2 for the 

fluxes and 0.014 K/d for the heating rates, we now see that estimating the fluxes results in slightly 

smaller errors (0.43 W/m2), whereas the heating rate errors are larger (0.042 K/d). This is consistent 

with challenges in the dataset, as the magnitude of incoming shortwave radiation is significantly larger 

than for longwave, whereas the heating rate profiles for longwave radiation are more complex in their 

vertical structure. This is demonstrated in the plots below which show sample predictions for 

shortwave and longwave processes (Fig. 7 and 8). 

Fig. 7 : Sample profiles of predictions from the leading SW RNN model. Columns indicate different profiles, with 
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rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines 

coincide almost everywhere, illustrating the high quality of prediction. 

 

 

Fig. 8: Sample profiles of predictions from the leading LW RNN model. Columns indicate different profiles, with 

rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines 

coincide almost everywhere, illustrating the high quality of prediction. 

3.3.4 Code   

The code for the longwave training has been added to the benchmark code in the MAELSTROM 

Radiation repository, https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation. Once pip 

installed, training can be invoked from the command line with 

radiation - benchmarks - lw  

which runs an example on the tier 1 dataset. Training for the optimal longwave model can be achieved 

with 

radiation - benchmarks - lw -- epochs 100 -- tier 2 -- batch 512  

3.3.5 Future work   

As with the shortwave process, we believe that these errors are low enough to satisfy offline testing. 

Over the remainder of the project we will focus on two aspects: Firstly, online testing, i.e. coupling 

both solvers simultaneously to the IFS and testing forecast accuracy and stability. Secondly, generating 

tangent-linear and adjoint versions of the shortwave and longwave processes. These gradient versions 

https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation
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of the neural network have value within data assimilation, particularly variational approaches such as 

4D-var which seeks to optimise forecast trajectories by propagating gradients through the full 

forecasting system. This requires accurate and fast gradient models for each component, which 

necessitates significant personnel investment to develop and maintain. Currently, the tangent-linear 

ŀƴŘ ŀŘƧƻƛƴǘ ƳƻŘŜƭǎ ŦƻǊ ǘƘŜ ǇƘȅǎƛŎŀƭ ǊŀŘƛŀǘƛǾŜ ǘǊŀƴǎŦŜǊ ǎŎƘŜƳŜ ƛƴ 9/a²CΩǎ LC{ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ŀƴ ƻƭŘŜǊ 

version of the radiation scheme. If the gradient information provided by an automatically 

differentiated neural network version of the radiative transfer process is sufficiently accurate, this 

would improve the correspondence between forward and gradient models and could significantly 

improve initial conditions and resulting weather forecasts. 

 

3.4 AP4: Improve ensemble predictions in forecast post-processing 

Over the past few years, there has been a growing interest in ensemble post-processing techniques 

aimed at enhancing forecast accuracy. These methods involve adjusting the distribution of output 

from ensemble weather prediction models to eliminate biases, a process known as prediction 

correction. They play a crucial role in enhancing the overall quality of ensemble forecasts. 

The primary objective of AP4 is to enhance the performance and reliability of machine learning-based 

models within the context of ensemble post-processing, also known as forecast post-processing. In 

pursuit of this goal, we have taken the initiative to introduce the ENS-10 (Ashkboos et al., 2022)  

dataset. This dataset comprises ten ensemble members, encompassing a time span of two decades, 

from 1998 to 2017. Our approach involves the application of various machine learning models to this 

extensive dataset, with the aim of advancing the state-of-the-art in ensemble post-processing 

techniques 

3.4.1 I/O Bottleneck 

In our previous deliverable, D1.3, we conducted an assessment of the effectiveness of implementing 

a U-Net style model on the ENS-10 dataset. In this evaluation, we carefully analysed the time allocation 

between forward and backpropagation processes for each batch and epoch. Our findings indicated a 

significant bottleneck in the training process due to input/output (I/O) operations. Therefore, it is 

evident that any future efforts aimed at enhancing performance should prioritise optimization at this 

particular stage of the application. 

This deliverable primarily focuses on optimising the overall runtime performance of our model by 

addressing a critical aspect: input/output (I/O) operations. As part of our investigation, we have 

recognized that the current practice of saving our dataset in NetCDF format and conducting 

computations during the data loading phase introduces a substantial I/O overhead that significantly 

impacts the efficiency of our neural network training process.   

To elaborate, our focus is on streamlining the end-to-end execution of our model, encompassing data 

handling and neural network training. A key observation is that the choice of saving the dataset in the 

NetCDF format, while beneficial for structured data storage, brings with it the challenge of I/O 

efficiency during the training phase. When we perform computations on-the-fly during data loading, 

it results in increased reading times and consequently slows down the overall training process. 
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3.4.2 NumPy and NetCDF Formats 

Table 3 illustrates the distinctions between the utilisation of NetCDF and NumPy formats. In our efforts 

to address the I/O challenges, we are contemplating a potential solution: preprocessing the entire 

dataset by performing all necessary computations, such as normalisation and slicing, and 

subsequently storing the resulting data in NumPy format. 

Use Case NetCDF Format NumPy Format 

Data Conversion Ease (to 
PyTorch Tensors) 

Requires additional steps for 
data conversion. PyTorch does 
not have built-in support for 
direct conversion from NetCDF 
files, necessitating custom 
code or external libraries for 
the conversion. 

Offers straightforward 
conversion as PyTorch 
seamlessly supports direct 
conversion from NumPy arrays 
using torch.from_numpy(). 

Conversion Speed and 
Efficiency 

Conversion from NetCDF to 
PyTorch tensors may involve 
reading and copying data, 
potentially resulting in 
increased conversion times, 
especially for large datasets. 

Conversion from NumPy arrays 
to PyTorch tensors is generally 
efficient, with minimal 
overhead, making it suitable 
for quick data loading and 
model training. 

Memory Usage NetCDF format may involve 
reading data into memory, 
potentially consuming more 
memory during conversion, 
especially for large datasets. 

NumPy arrays are memory-
efficient, and PyTorch can 
efficiently create tensors from 
NumPy arrays without 
significant memory overhead. 

Compression and File Size 
Optimization 

Offers built-in compression 
options for reducing file sizes 
while preserving data integrity. 

Compression can be applied 
externally but requires more 
manual configuration 
compared to NetCDF's built-in 
compression. 

Data Complexity Ideal for complex data with 
numerous dimensions and 
associated metadata, such as 
climate data, geospatial data, 
and model outputs. 

Suitable for a wide range of 
numerical data but may lack 
the structure needed for 
complex, multidimensional 
data. 

Table 3: Comparison between data provision using the NetCDF and NumPy format. We fix our I/O issue by saving 

the whole ENS-10 dataset in NumPy format and applying the normalizations offline.  
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3.4.3 Results 

To assess the effectiveness of our I/O enhancements, we conducted training experiments utilising the 

U-Net network architecture as described in the work by Ashkboos et al. (2022) on the ENS-10 dataset. 

Our U-Net model consists of three hierarchical levels, each comprising a sequence of modules, 

including convolution, batch normalisation, and ReLU activation functions.  

For data input, the network operates on the entire grid and processes data with 22 input dimensions 

for surface features and 14 input dimensions for volumetric features. This corresponds to two inputs 

per variable present in the ENS-10 dataset, facilitating comprehensive data representation.  In terms 

of network architecture, we employed convolutional layers with 32 output channels in the first level, 

64 output channels in the second level, and 128 output channels in the third level of our U-Net model. 

For all experiments,  we use a single 40 GB A100 GPU from ETH computing resources using CUDA 11.7 

and train our model for three epochs. We use PyTorch 2.0.0 to implement our code and run the 

experiments. We train each model using three different random seeds and report the mean and 

standard deviation. Batch, forward, and backward time was measured using GPU-side timing.  

 

Metric Min(s) Max(s) Median(s) Mean(s) Std(s) 

Epoch 1098.97 1102.71 1101.08 1100.92 1.87 

Batch 1058.43 1062.31 1061.08 1060.61 1.98 

Forward 26.91 27.94 27.92 27.59 0.59 

Backward 12.47 13.09 12.60 12.72 0.32 

Table 4: The Benchmarking results for AP4 using NetCDF format. 

 

Metric Min(s) Max(s) Median(s) Mean(s) Std(s) 

Epoch 214.75 226.27 220.20 220.40 5.76 

Batch 172.11 183.01 177.28 177.47 5.45 

Forward 30.31 30.42 30.33 30.36 0.057 

Backward 12.323 12.84 12.56 12.59 0.25 

Table 5: The Benchmarking results for AP4 using NumPy format. 

 

Tables 4 and 5 show the results of our experiments using the NetCDF and NumPy formats. We get up 

to the 4.9x speed-up by using NumPy data format in our experiments. Specifically, the mean time of 

each epoch is reduced from 1100.92s to 220.4s. 
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3.5 AP5: Improve local weather predictions in forecast post-processing 

AP5 explores the application of deep neural networks for statistical downscaling of meteorological 

fields. 

So far, the statistical downscaling models have been developed in an end-to-end approach. This means 

that task-specific neural networks have been trained from scratch using pairs of coarse-grained input 

and high-resolved target data. However, pairing of input and target data often limits the amount of 

training samples since both datasets must cover the same time period and region for this purpose. In 

the case of the Tier 2-dataset, the ERA5-reanalysis, which serves as the coarse-grained input, provides 

global data from 1979 until near real-time. By contrast, the high-resolved targeted COSMO REA6-

reanalysis constitutes a regional dataset whose temporal coverage is restricted from Jan 1995 to 

August 2019. Thus, large parts of the ERA5-reanalysis dataset cannot be leveraged during training in 

an end-to-end approach. 

Inspired by the recent success of foundation models in natural language processing (see, e.g., Zhou et 

al., 2023), we therefore explore the applicability of the large-scale representation model for 

atmospheric dynamics AtmoRep (Lessig et al., 2023) in scope of this deliverable. AtmoRep constitutes 

a task-agnostic generative neural network that is considered to be suitable for a wide range of 

meteorological applications and thus represents a foundation model  (Bommasani et al., 2021). By 

pretraining the encoder-decoder transformer network of AtmoRep on (nearly) the complete ERA5 

reanalysis dataset, a powerful abstraction of the atmospheric state can be obtained. This abstraction 

can then be exploited when finetuning a task-specific network extension (encoder-decoder of 

AtmoRep +tail network) for statistical downscaling. 

A compact overview on AtmoRep and its application for statistical downscaling is provided in the 

following. For a detailed description of AtmoRep, we refer however to  Lessig et al. (2023) and its 

comprehensive supplement.   

3.5.1 The AtmoRep model and fine-tuning for downscaling  

Mathematically, AtmoRep is built on the description of the atmospheric state as a stochastic 

dynamical model (see, e.g., Hasselmann, 1976 and Palmer et al., 2008). With this, the probability for 

a state ώ given the input atmospheric state●ᴆ is described as a conditional probability distribution 

ὴώȿὼȟ‌. The input state ὼ can, for instance, be the atmospheric state at time ὸ, whereas ώ 

represents the atmospheric state at a later time ὸ ὸ ῳὸ. The atmospheric state is here 

complemented by ‌ which may provide auxiliary information such as the year information to encode 

global climate forcing. Since no analytical description of the highly complex and non- stationary 

stochastic system is available, AtmoRep makes use of the approximation 

ὴ ώȿὼȟ‌ ὴώȿὼȟ‌                                                                         

where ὴ ώȿὼȟ‌ constitutes an encoder-decoder neural network based on Transformer blocks 

(Vaswani et al., 2017). As already mentioned, the ERA5 reanalysis dataset serves as input data, 

providing the most accurate, available estimate on the global atmospheric state. Specifically, different 

state variables such as the 3D wind-vector, the temperature or the specific humidity on different 

model levels are inputted in the form of gridded data within local space-time cubes (e.g. 36h x 5 

vertical levels x 1800 km x 1800 km). To learn an abstract representation of the atmospheric dynamics, 
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the data cubes are tiled into patches in analogy to tokens in computer vision (Dosovitskiy et al., 2020). 

During training, a random subset of the tokens gets masked or distorted and the encoder-decoder 

network is asked to reconstruct these tokens. This strategy of self-supervised training is inspired by 

the BERT training strategy suggested in Devlin et al., 2018. Here, high masking ratios have been found 

to promote learning of robust representations.  

AtmoRep thereby constitutes a probabilistic model by outputting an ensemble for the intrinsically 

uncertain dependant state ώ. A novel statistical ensemble loss that measures the distance between 

the (deterministic) ground truth data and the probabilistic prediction with the help of a Gaussian fit is 

used as a training objective combined with the usual MSE-loss. A conceptual illustration of AtmoRep 

is provided in Figure 9. 

For efficiency reasons and for the sake of a modular model design, the pre-training is performed as a 

two-step approach. At first, state variable-specific encoder-decoder networks (Singleformers) are 

trained individually until convergence, i.e. ὼ  and  ώ are just expressed by a single variable on multiple 

levels in the Singleformers. Second, different variables are coupled together via cross-attention 

between the variable-specific Transformer layers of the encoder and training of the resulting 

Multiformer is continued to obtain a more complete abstraction of the atmospheric dynamics. This 

approach has the advantage of saving computation time, since the optimization converges quickly in 

the latter step, while the cross-attention operations scale quadratically as opposed to the self-

attentions. Furthermore, task-specific configurations with different variables become possible 

through the two-step training approach and the modular design.  

For the downscaling task, the horizontal wind vector components as well as the temperature on model 

levels 137, 123, 114, 105 and 96 are used since this information is considered to be the most relevant 

for the subsequent downscaling of the 2m temperature field. The Singleformers of the three variables 

have been trained individually on 8 nodes (32 GPUs) of  Juwels Booster for several days. Subsequently, 

the Multiformer is trained, before AtmoRep gets extended with a task-specific tail network for 

downscaling. The tail network comprises 6 transformer blocks consisting of transformer layers with 

16 attention heads and two multilayer perceptrons. To increase the spatial resolution of the data, the 

ƻǳǘǇǳǘ ǘƻƪŜƴǎ ƻŦ !ǘƳƻwŜǇΩǎ ŘŜŎƻŘŜǊ ƎŜǘ ƛƴŎǊŜŀǎŜŘ ōȅ ŀ ŦŀŎǘƻǊ ƻŦ п ǘƻƎŜǘƘŜǊΦ ¢ƘŜ ƛƴŎǊŜŀǎŜŘ ƴǳƳōŜǊ 

of tokens also require embedding (linear layer) with an updated local positional encoding, while the 

embedding dimension also gets doubled. In contrast to the three Singleformers and the Multiformer 

only data from model level 137 is used in the fine-tuning step. 

During fine-tuning, the parameters of the encoder-decoder as well as the tail network are optimised, 

resulting in about 1.85 billion trainable parameters. Model parallelism is required to fit the network 

 

on the computing nodes of Juwels Booster, where the three  state variable-specific transformers and 

the  tail network are placed on one GPU each. The finetuning is run for three days on eight nodes.  
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Fig. 9: Illustration of the self-supervised training of AtmoRep. Local space-time data cubes of state variables are 

sampled and then tailed into tokens of which a random subset gets masked. AtmoRep then reconstructs the data 

of the masked tokens with an ensemble prediction. The statistical loss is then used for optimization. 

3.5.2 Dataset    

While the pre-training of the Singleformers and the Multiformer are solely performed with the global 

ERA5-reanalysis dataset (from 1979 to 2017), the subsequent finetuning requires pairing with the 

COSMO REA6 dataset. Contrarily to the Tier-2 dataset used in previous deliverables, the underlying 

shared grid projection of the data is changed from the rotated pole grid of the COSMO REA6-dataset 

to the regular (lat, lon)-grid onto which the ERA5 reanalysis is provided. The input ERA5-data is defined 

on a 0.25°-grid, while the COSMO REA6-data is remapped on a 0.0625°-grid following the procedure 

described in deliverable 1.1.  

Variable (variable name) Model levels Data Source (grid 
spacing) 

Input/Output  

temperature (t) 96***, 105***, 114***, 
123***, 137***  

ERA5 (0.25°) Input 

u-wind (u) 96**, 105**, 114**, 
123**, 137***  

ERA5 (0.25°) Input 

v-wind (v) 96**, 105**, 114**, 
123**, 137***  

ERA5 (0.25°) Inout 

surface geopotential (z)* - ERA5 (0.25°) Input 

2m temperature (t_2m) - COSMO REA6 (0.0625°)  Output 

surface topography (hsurf)* - COSMO REA6 (0.0625° Input/Output 

Table 6: Overview of input and output variables used for the 2m temperature downscaling task. Variables 

denoted with * served as auxiliary input/output variables for the competing WGAN. Data on model levels 


