

MAchinE Learning for Scalable meTeoROlogy

and climate

Revisions of customised ML

solutions for enhanced datasets

www.maelstrom-eurohpc.eu

http://www.maelstrom-eurohpc.eu/

D1.4: Revisions of customised ML

solutions for enhanced datasets

Author(s): Michael Langguth (FZJ), Bing Gong (FZJ),

 Martin Schultz (FZJ) and all application developers

 of Work Package 1

Dissemination Level: Public

Date: 15/09/2023

Version: 0.1

Contractual Delivery Date: 30/09/2023

Work Package/ Task: WP1/ T1.4

Document Owner: FZJ

Contributors: 4cast, ECMWF, ETH, FZJ, MetNor

Status: Final

MAELSTROM

Machine Learning for Scalable Meteorology and

Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:

ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 955513. The JU receives
ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ
and innovation programme and United Kingdom,
Germany, Italy, Luxembourg, Switzerland, Norway

mailto:Peter.Dueben@ecmwf.int

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 5

Contents
1 EXECUTIVE SUMMARY 6

2 INTRODUCTION .. 7

2.1 ABOUT MAELSTROM ... 7

2.2 SCOPE OF THIS DELIVERABLE ... 7

3 UPDATE ON ADVANCED MACHINE LEARNING SOLUTIONS FOR THE SIX APPLICATIONS ... 12

3.1 AP1: BLEND CITIZEN OBSERVATIONS AND NUMERICAL WEATHER FORECASTS ... 12

3.2 AP2: INCORPORATE SOCIAL MEDIA DATA INTO THE PREDICTION FRAMEWORK .. 17

3.3 AP3: BUILD NEURAL NETWORK EMULATORS TO SPEED-UP WEATHER FORECAST MODELS AND DATA ASSIMILATION 19

3.4 AP4: IMPROVE ENSEMBLE PREDICTIONS IN FORECAST POST-PROCESSING .. 24

3.5 AP5: IMPROVE LOCAL WEATHER PREDICTIONS IN FORECAST POST-PROCESSING .. 27

3.6 AP6: PROVIDE BESPOKE WEATHER FORECASTS TO SUPPORT ENERGY PRODUCTION IN EUROPE 35

4 ANALYSING AND IMPROVING ML SOLUTIONS WITH THE WORKFLOW PLATFORM MANTIK ... 37

5 REFERENCES .. 40

Figures

Figure 1: Schematic diagram of the U-Net used in this ŀǇǇƭƛŎŀǘƛƻƴΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦмн

Figure 2: Example input fields (upper row) and fields provided by the upsampling layer in Level 6 (lower row)

for the U-Net model for a 512x512 patch covering Denmark and southern Norway and Sweden. The first 6

fields foǊ ŜŀŎƘ ǘȅǇŜ ŀǊŜ ǎƘƻǿƴΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦмо

CƛƎǳǊŜ оΥ ¢Ŝǎǘ ƭƻǎǎ ŀƎŀƛƴǎǘ ŦƻǊŜŎŀǎǘ ƭŜŀŘ ǘƛƳŜ ŦƻǊ ƳƻŘŜƭǎ ǘǊŀƛƴŜŘ ǿƛǘƘ ǾŀǊȅƛƴƎ ǎŜǘǎ ƻŦ ǇǊŜŘƛŎǘƻǊǎΧΧΦмс

Figure 4: An example forecast for 13:00Z on September 16, 2023 made using the final U-Net model. The map

ǎƘƻǿǎ ǘƘŜ рлǘƘ ǇŜǊŎŜƴǘƛƭŜ ŦƻǊŜŎŀǎǘ ŦƻǊ ǘƘŜ ǎƻǳǘƘŜǊƴ ƘŀƭŦ ƻŦ ǘƘŜ ŘƻƳŀƛƴΧΧΧΧΧΧΧΦΧΧΦΧмт

CƛƎǳǊŜ рΥ [ŜŦǘΥ /ƻƴŦǳǎƛƻƴ ƳŀǘǊƛȄ ƻŦ ƻǳǊ ōŜǎǘ ƳƻŘŜƭ ŦƻǊ ǘƘŜ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ƻŦ ¢ǿŜŜǘǎ ŀǎ άǊŀƛƴƛƴƎέ ƻǊ άƴƻǘ ǊŀƛƴƛƴƎέΦ

Right: ROC curve for the same model. While the majority of Tweets is correctly classified, further analysis on

misclassified Tweets identified the lack of relevant information in the text to make a correct judgement as the

Ƴŀƛƴ ǎƻǳǊŎŜ ƻŦ ŜǊǊƻǊΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦмф

Figure 6: Mean-squared-error (MSE) performance on test dataset for longwave fluxes (left) and longwave

heating-rates (right), comparing model designs featuring GRU-type RNNs and LSTM-type RNNs. LSTMs reduced

errors for both fluxes and heating rates by approximately 10%......................22

Figure 7: Sample profiles of predictions from the leading SW RNN model. Columns indicate different profiles,

with rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines

coincide almost everywhere, illusǘǊŀǘƛƴƎ ǘƘŜ ƘƛƎƘ ǉǳŀƭƛǘȅ ƻŦ ǇǊŜŘƛŎǘƛƻƴΦΧΧΧΦнн

Figure 8: Sample profiles of predictions from the leading LW RNN model. Columns indicate different profiles,

with rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines

ŎƻƛƴŎƛŘŜ ŀƭƳƻǎǘ ŜǾŜǊȅǿƘŜǊŜΣ ƛƭƭǳǎǘǊŀǘƛƴƎ ǘƘŜ ƘƛƎƘ ǉǳŀƭƛǘȅ ƻŦ ǇǊŜŘƛŎǘƛƻƴΦΧΧΧΦно

Figure 9: Illustration of the self-supervised training of AtmoRep. Local space-time data cubes of state variables

are sampled and then tailed into tokens of which a random subset gets masked. AtmoRep then reconstructs

the data of the masked tokens with an ensemble prediction. The statistical loss is then used for

ƻǇǘƛƳƛȊŀǘƛƻƴΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΦΧΧΧΦΦΧΧнф

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 6

Figure 10: Target domain of the AtmoRep downscaling application. The surface topography in metres above

sea level is used to highlight the domain. The target domain of the trained competing WGAN-model is

ǊŜƴŘŜǊŜŘ ƛƴ ōƭŀŎƪΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΦΧΧΧΦΧΦΦол

Figure 11: Diurnal cycle of the RMSE (left) and the gradient ratio (right) as averaged over the test year 2018

from the AtmoRep downscaling experiment. The shaded area represents the standard deviation of the scores

ŀǎ ŀƴ ŜǎǘƛƳŀǘŜ ƻŦ ǘƘŜƛǊ ǳƴŎŜǊǘŀƛƴǘȅΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΦΦΦΦон

Figure 12: Power spectrum of the 2m temperature field from the COSMO REA6 ground-truth data (blue line)

and the downscaled product of AtmoRep (green line). The spectra are averaged over the whole test year.

Right: Diurnal cycle of the RMSE for the summer months JJA 2018ΧΧΧΧΧΧΧΦΧΦΦΦон

Figure 13: As Figure 11, but joint evaluation of results obtained with AtmoRep (blue) and the WGAN

(black)...33

Figure 14: Illustration of the DCv2 algorithm. Input to the models is a certain number of random crops of the

original input samples. The ResNet50 and MLP are trained with the pseudo-labels assigned to each sample by

the spherical K-ƳŜŀƴǎΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧор

Figure 15: Result of the spherical K-Means clustering in 2-D embedding space. The output of the MLP has 128

dimensions and is reduced to 2 dimensions using t-{b9ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΦор

Figure 16: Mean duration and standard deviation of each large-scale weather regime. The regimes result from

the clustering algorithm (cf. Fig. 15) assigning each data sample (day) to a cluster. All regimes have a mean

duration of 1ς2 days, where some regimes show very large standard deviations (e.g. regime

7)...37

Figure 17: New runs are configured via this form on the Mantik platform GUI. Both model parameters and

cluster specifications are editable from this form, which ensures flexibility for application developers (Note,

the same scrollable form is split into two images for clarity).............38

Figure 18: Tracking performed for our Runs can be visualised via the integrated MLflow GUI, which allows the

ǳǎŜǊ ǘƻ ŎǊŜŀǘŜ ŦƛƎǳǊŜǎ ŦƻǊ ŀ ǉǳƛŎƪ ŀƴŀƭȅǎƛǎ ƻŦ ǘƘŜƛǊ ǊŜǎǳƭǘǎΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΦΦоф

Figure 19: Tracking performed for our Runs can be visualised via the integrated MLflow GUI, which allows the

user to create figures for ŀ ǉǳƛŎƪ ŀƴŀƭȅǎƛǎ ƻŦ ǘƘŜƛǊ ǊŜǎǳƭǘǎΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΦпл

Tables

Table 1: List of hyper-parameters that weǊŜ ǘŜǎǘŜŘΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧ.15

Table 2: The improvement column shows the fractional decrease in test loss relative to the raw elevation

corrected modeƭΧΧΧΦΧмр

Table 3: Comparison between data provision using the NetCDF and NumPy format. We fix our I/O issue by

saving the whole ENS-10 dataset in NumPy format and applying the normalizations

ƻŦŦƭƛƴŜΦΦΧΧΧΦΧΦΦΧ...25

Table 4: The Benchmarking results for AP4 using Net/5C ŦƻǊƳŀǘΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ26

Table 5: The Benchmarking results for AP4 using NǳƳtȅ ŦƻǊƳŀǘΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.26

Table 6: Overview of input and output variables used for the 2m temperature downscaling task. Variables

denoted with * served as auxiliary input/output variables for the competing WGAN. Data on model levels

denoted with ** have been used exclusively for pre-training AtmoRep, whereas *** represents data on model

levels that has been inputteŘ ǘƻ ǘƘŜ ²D!b ŀƴŘ ǘƻ !ǘƳƻwŜǇΧΧΧΧΦΧΧол

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 7

1 Executive Summary

This deliverable provides the description of the updated machine learning solutions for the

MAELSTROM applications that have been developed based on the enhanced benchmark datasets

described in Deliverable 1.2 and 1.3 (D1.2 and D1.3). A general overview on the progress and a

discussion of deviations from the proposal is provided in Section 2. There has been no change of plans

for the application development and, overall, the work on the MAELSTROM applications is developing

nicely (see detailed presentation in Section 3). However, MAELSTROM has supported two more

application areas ς the development of full machine learned weather forecast models and the

development of Foundation Models for weather and climate applications ς as both areas have shown

very fast developments and significant impact in the last two years and as they are very interesting for

a!9[{¢whaΩǎ Ŏƻ-design approach as the developed tools are very data and compute intensive.

Finally, Section 4 is presenting an example of how the Mantik tool, developed in work package 2, can

be used for the developments of machine learning applications. Application 2 (AP2) from the set of

MAELSTROM applications serves as an example here.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 8

2 Introduction

2.1 About MAELSTROM

¢ƻ ŘŜǾŜƭƻǇ 9ǳǊƻǇŜΩǎ ŎƻƳǇǳǘŜǊ ŀǊŎƘƛǘŜŎǘǳǊŜ ƻŦ ǘƘŜ ŦǳǘǳǊŜΣ a!9[{¢wha ǿƛƭƭ Ŏƻ-design bespoke

compute system designs for optimal application performance and energy efficiency, a software

framework to optimise usability and training efficiency for machine learning at scale, and large-scale

machine learning applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of

computing systems regarding energy consumption, time-to-solution, numerical precision and solution

accuracy. Customised compute systems will be designed that are optimised for application needs to

ǎǘǊŜƴƎǘƘŜƴ 9ǳǊƻǇŜΩǎ ƘƛƎƘ-performance computing portfolio and to pull recent hardware

developments, driven by general machine learning applications, toward needs of weather and climate

applications.

The MAELSTROM software framework will enable scientists to apply and compare machine learning

tools and libraries efficiently across a wide range of computer systems. A user interface will link

application developers with compute system designers, and automated benchmarking and error

detection of machine learning solutions will be performed during the development phase. Tools will

be published as open source.

The MAELSTROM machine learning applications will cover all important components of the workflow

of weather and climate predictions including the processing of observations, the assimilation of

observations to generate initial and reference conditions, model simulations, as well as post-

processing of model data and the development of forecast products. For each application, benchmark

datasets with up to 10 terabytes of data will be published online for training and machine learning

tool-developments at the scale of the fastest supercomputers in the world. MAELSTROM machine

learning solutions will serve as a blueprint for a wide range of machine learning applications on

supercomputers in the future.

2.2 Scope of this deliverable

2.2.1 Objectives and work performed in this deliverable

To close the MAELSTROM co-design cycle between application, software and hardware developments

and Work Package 1, 2 and 3 for the second time, this deliverable provides an update on the

developments of the MAELSTROM applications. The progress that has been achieved is documented

per MAELSTROM application in Section 3. The developments are based on the hardware benchmarks

that were performed in Work Package 3 (see D3.4 and D3.6) and some of the applications are also

already making active use of the software tools of Work Package 2 (see D2.3 and D2.4) as documented

for AP2 in Section 4.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 9

2.2.2 Deviations and counter measures

Two developments have recently changed how machine learning will impact the weather and climate

domain in the medium and longer term future that were not foreseeable during the writing phase of

the MAELSTROM proposal.

The first development is the great success of entire weather prediction systems based on machine

learning that are (yet) trained from the ERA5 reanalysis dataset. The models are now showing a level

of quality that is beating scores for deterministic weather predictions of conventional models,

therefore challenging the entire way of how numerical weather prediction is formed. Big technology

companies such as Google/Deepmind, NVIDIA, Huawei and Microsoft are building their own model

configurations. The MAELSTROM applications are in general following a slightly different motivation

when compared to the full machine learning weather forecast models as they advance conventional

models with machine learning in a hybrid machine learning / conventional approach, for example via

post-processing or via the emulation of model components. The new machine-learned weather

models do not make the MAELSTROM applications obsolete as hybrid approaches for numerical

weather prediction will still play a very important role for the future of numerical weather predictions.

Therefore, the development of the six MAELSTROM applications have proceeded and the results are

documented below. However, MAELSTROM has embraced the new developments supporting the

evaluation and comparability of machine learned weather forecast models. The level of support is

ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ a!9[{¢whaΩǎ ƛŘŜƻƭƻƎȅ ǘƻ ƳŀƪŜ ƳŀŎhine-learned approaches more comparable. Two

publications have been supported by MAELSTROM in this context.

Ben-Bouallegue et al. 2023 is performing a detailed evaluation to understand how the Pangu Weather

machine learning model that was developed in Bi et al. 2023 compares to results from conventional

weather models. This is important as the new models use very different concepts for numerical

discretisation and time stepping techniques, and as weather predictions need to be trustable to be

useful with a good understanding of limits in predictability that cannot easily be derived from

deterministic forecast scores.

Rasp et al. 2023 is publishing a new benchmarking framework for pure machine learning models that

provides access to training data and a detailed comparison of diagnostics to provide a fair comparison

of results for different machine-learned weather forecast models. The paper provides a new baseline

for model comparisons and follows the concept of MAELSTROM as large datasets are made available

to the public for download with easy access facilitated by notebooks.

To engage with the pure machine learning model developments was also important for MAELSTROM

as the developed models are among the largest machine learning tools that are currently developed

in the weather and climate domains. Both in terms of data but even more importantly in terms of

parallel training.

The second development was the move towards machine learning foundation models in many

domains. These models are very large machine learning applications that follow a different philosophy

when compared to machine-learned tools trained for a specific application, as they use semi-

supervised training to learn the basic features and connectivity of the data in a pretraining step. In a

second step, the learned abstraction of the data can be used for fine-tuning for specific tasks and

applications. This approach leads to tools that are more generic compared to tools from direct

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 10

supervised training. Furthermore, foundation models often provide better results when compared to

specific tools for applications in many domains, and in particular for large language models.

The domain of weather and climate is starting to test whether foundation models can be useful for

weather and climate applications and, if successful, foundation models may lead to yet another step-

change in the quality of machine learning tools. The approach is of particular interest for MAELSTROM

as the resulting models need very large scale training data sets and large-scale machine-learned

models that need significant high performance compute power to be trained. MAELSTROM has

therefore supported one of the first approaches to build a foundation model for weather and climate

science, called AtmoRep (Lessig et al. 2023), and AtmoRep is now also tested for use in Application 5

(see Section 3.5).

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 11

3 Update on Advanced Machine Learning solutions for the six

applications

3.1 AP1: Blend citizen observations and numerical weather forecasts

The goal of AP1 is to produce high resolution (1x1 km) hourly temperature forecasts with a lead time

of up to 58 hours for the Nordic countries, using NWP forecasts as inputs and recent conditions as

estimated by citizen observations. In the context of the recent developments in purely data-driven

forecasting, this application is a hybrid approach, leveraging both conventional post-processing of

NWP output and including information from a starting state based on available observations that the

ML-model can propagate forward in time.

The aim of this deliverable is to fine-tune the configuration of the U-Net (Fig. 1) in order to improve

its predictive accuracy and make it ready for operational use at MET-Norway. The U-Net model was

the most promising of the architectures studied in Deliverable 1.3 (D1.3). In the previous deliverable

on scientific testing (D1.3), we noted that the data loading pipeline needed to be improved to allow

for extensive testing of the model. A major outcome of the co-design loop with WP2 and WP3 was a

much improved data processing pipeline. The work, culminating in D3.6, resulted in an improvement

in the average processing performance from 0.42 GB/s (in D1.3) to 3.2 GB/s. This was a result of better

exploitation of hardware resources, including CPUs, GPUs, and memory. More details on these

improvements are documented in D2.4. We use these gains to greatly reduce the cost of training a

suitable model.

Fig. 1: Schematic diagram of the U-Net used in this application.

3.1.1 Dataset

The dataset has not changed significantly since D1.3. The dataset is still 6TB and contains the same

predictors (14). The main change is that lead time-independent predictors are placed in a separate

variable that does not contain the lead time dimension. This was done to make the dataset more

intuitive for others to use.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 12

The full dataset has two years of daily files. We use the first year (2020-03 to 2021-02) as the training

dataset, where 24 files have been reserved for validation. We use the remaining time period (2021-03

to 2022-02) for final testing.

As the U-Net can introduce artefacts near the borders of the domain it is applied on, we removed a

band of 32 pixels in width around the border when computing the loss function. This was done in

training, validation, and testing.

3.1.2 Iterating towards a working U-Net model

We spent a significant effort getting a basic configuration of the U-Net model to work properly with

our data. Early attempts appeared to give good validation scores with realistically looking output

fields. However, we determined that this was noǘ ŀ ǊŜǎǳƭǘ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ŀōƛƭƛǘȅ ǘƻ ŎŀǇǘǳǊŜ ǎƛƎƴŀƭǎ ŀǘ

different spatial scales. All value was provided by the skip-connections on the top level and the lower

levels did not provide any fields that impacted the final output fields. Our complex U-Net was

effectively just a simple convolutional neural network. We checked this by plotting examples of

tensors as it passed through the different levels in the network and noted that the final upsample

fields (between level 2 and level1) were all 0.

We believe this problem is caused by the ReLU activation layers, which sets negative inputs to 0 and

keeps positive inputs unchanged. Under certain conditions, these units can go dormant failing to

provide a gradient that helps the network learn new features. This is referred to as the "dying ReLU"

problem. We noticed that as the training progressed, more and more ReLU units died. We also tested

exponential linear units, but this gave similar problems, possibly due to vanishing gradients when input

values are very negative. We found that leaky ReLU activation layers solve this problem. With this type

of activation, we got coarse grained fields as shown in Fig. 2.

Fig. 2: Example input fields (upper row) and fields provided by the upsampling layer in Level 6 (lower row) for

the U-Net model for a 512x512 patch covering Denmark and southern Norway and Sweden. The first 6 fields for

each type are shown.

Leaky ReLU caused exploding gradients. This was solved by limiting the L2 norm of the gradients to 1,

which is easily implemented by providing an argument to the Adam optimizer in Keras. This does,

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 13

however, come with a sizable performance hit (on the order of 20%). We did not investigate how to

mitigate this performance hit.

We also investigated batch normalisation, which is commonly used in U-Nets after each convolution

layer, but before the activation layer. This did not lead to stable results for us. We used

BatchNormalization in Keras, which computes running mean and variance of the inputs to the layer.

We tested different values of momentum (which governs how fast values are adapted). We suspect

that part of the problem is that the batches we provide are not large enough and do not contain

samples that are sufficiently random. Our data loader is not designed to give a completely random

sample in each batch. It is possible that due to this, there is a coordinate shift throughout the epoch

and that the batch normalisation keeps lagging behind.

In addition, we tested different methods for splitting the dataset into chunks that are used by each

Horovod process. Each process computes the gradient of a given batch of data, and the gradients are

averaged. By splitting the dataset such that each process gets 3 consecutive months of data, we

ensure that all seasons are represented each time a batch is processed. We believe this should lead

to faster learning.

After a lot of trial and error, we came up with a basic U-Net model with the following configuration:

 6 levels

 1x1 convolution size

 Splitting the whole domain into patches of size 512x512

 Batch size 1

 16 features on level 1

 Feature factor of 2 (the factor increase in number of features as you increase the level)

 2x2 max pooling

 Leaky ReLU activation after each convolution

 2x2 nearest neighbour upsampling

 Cosine decay restarts learning rate schedule, initial learning rate 1.0e-3

 Include extra static predictors: forecast lead time, x/y spatial coordinates

This configuration has 1,314,019 trainable parameters.

3.1.3 Hyper-parameter tuning

We tested different settings of the basic U-Net configuration. The hyper-parameter space is quite large

and we cannot test every combination. We therefore perturb some of the hyper-parameters of this

model, one at a time to see the effect of each parameter (Table 1).

Hyper-parameter Basic configuration Alternative configuration

Pooling operator Max Average

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 14

Number of levels
Pooling size

6
2x2

3
4x4

Feature ratio 2 1

Convolution size 1x1 3x3

Table 1: List of hyper-parameters that were tested.

We used the Juelich Benchmarking Environment (JUBE) to organise the hyper-parameter tuning. This

is similar to what we did in D3.6 with testing different hardware and data processing settings. We

scheduled the jobs on a single JUWELS Booster node, performing distributed training on 4 Nvidia A100

GPUs.

Each training run traverses the training dataset three times. We computed the validation score f 30

times throughout the training period and stored the best performing weights. This model state was

then used for final testing.

One important aspect of AP1 is its high resolution grid (1x1km). This means we need many levels in

the U-Net to ensure a broad receptive field. However, this leads to many parameters. For example, a

6 level U-Net has over 1 million parameters. We therefore tested a U-Net model where the

downsampling ratio is 4 instead of 2. Then, we can get the same receptive field with 3 levels as with 6

levels. We also changed the 3x3 convolution to a 1x1 convolution.

Because the basis for the input data source (2.5km) differs from the final output grid (1km), there is

an elevation difference that can trivially be corrected for. We created a benchmark model that copied

the raw forecasts and allowed for an elevation correction with a trainable constant lapse rate. This

was trained to be 7.39°C/km.

We ran each configuration three times and averaged their test loss.

Description Parameters Test loss Improvement

Raw elevation corrected model 1 0.2495 0.0 %

Basic configuration 1,314,019 0.2170 13.0%

Fewer features (feature ratio 1) 13,891 0.2170 13.0%

Mean pooling instead of max pooling 1,314,019 0.2139 14.3%

Fewer levels (3), bigger downsampling ratio (4) 20,195 0.2174 12.9%

Bigger convolution stencil (3x3) 9,000,291 0.2193 12.1%

Table 2: The improvement column shows the fractional decrease in test loss relative to the raw elevation

corrected model.

These results indicate that all models performed quite well, leading to improvements over the raw

elevation-corrected forecast. The main tuning benefit was to replace the max pooling layer with a

mean pooling layer, leading to a further 1.3% improvement. Max pooling is often used to find well-

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 15

defined edges in images and it is possible that in this application, large scale averages provide more

relevant signals. The other tuning efforts did not lead to any improvement over the basic

configuration.

3.1.4 Assessing the impact of predictor variables

The input data set contains a wealth of predictors. For operational implementation, including extra

variables causes several challenges. Firstly, they can slow down production because the features can

be expensive to extract from the input model data. Secondly, they make the model more vulnerable

to changes in the NWP model. The physics routines in the NWP model we use are tuned over time.

Including a greater number of variables increases the risk of inconsistency between the training

dataset and the data used in operations. We therefore want to make sure that the input variables do

provide added value.

To do this, we trained the final U-Net model on different subsets of the parameters. In one

experiment, we used only the temperature variables (and static predictors such as altitude, lead time,

and x/y coordinates). In the other configuration, we added on the two bias variables (recent bias and

ȅŜǎǘŜǊŘŀȅΩǎ ōƛŀǎύΦ wŜǎǳƭǘǎ ƛƴŘƛŎŀǘŜ ǘƘŀǘ ǇŜǊŦƻǊƳŀƴŎŜ ƛǎ ƎǊŜŀǘƭȅ ǊŜŘǳŎŜŘ ǿƘŜƴ ǘƘŜ ǘǿƻ ōƛŀǎ ǾŀǊƛŀōƭŜǎ

were omitted (Fig. 3). We also note a reduction in performance when the non-temperature and bias

related variables were omitted (difference between black and blue line). Thus, winds, precipitation,

and clouds also provide added value to our model, though to a lesser extent than the bias predictors.

Fig. 3: Test loss against forecast lead time for models trained with varying sets of predictors.

3.1.5 Operationalization of model and future work

We have worked extensively on integrating the data processing pipeline and the U-Net model into

a9¢ bƻǊǿŀȅΩǎ ƻǇŜǊŀǘƛƻƴŀƭ forecasting system. We also performed a long training run using all

available data (by merging the training and testing datasets) to create a trained model that we will use

in production. The operational code is working and we produced a first test forecast (Fig. 4).

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 16

The next step is to perform some internal evaluation of the forecasts at MET-Norway, followed by a

launch of the improved product on our weather app Yr (https://www.yr.no).

Fig. 4: An example forecast for 13:00Z on September 16, 2023 made using the final U-Net model. The map shows

the 50th percentile forecast for the southern half of the domain.

3.1.6 Data and Code access

The training and testing code is available on https://github.com/metno/maelstrom-train, as in

previous deliverables. The JUBE configuration for the scientific tests is found in jube/d1-4.yml.

3.2 AP2: Incorporate social media data into the prediction framework

Posts ons social media may provide relevant information about the current state of the weather at

the location of the user. This application aims to harvest this information to improve weather

predictions. For this, information related to weather needs to be extracted from a rather unstructured

and unreliable data source. As a test balloon, we are developing a model that can determine from the

text of a Tweet whether it was raining at the location and time at which the Tweet was sent. Our initial

implementation was presented in Deliverable 1.3 (D1.3). Since then, we mainly focused on improving

our training dataset. In addition, we added a new dataset based on precipitation data collected from

weather stations, which improves our evaluation robustness. Finally, we give an outlook to planned

improvements to our model.

3.2.1 Dataset

We use historical English Tweets from 2017-2020 that include keywords related to the presence of

ǊŀƛƴΣ ŜΦƎΦΣ άǊŀƛƴέΣ άǎǳƴƴȅέ ƻǊ άŘǊƛȊȊƭŜΦέ ²Ŝ focus on Tweets sent from an identifiable location in the UK,

which is required to map the Tweet to the precipitation dataset (see D1.3 for more details). Tweets

Ƴŀȅ ōŜ ƭƛƴƪŜŘ ǘƻ ǾŀǊƛƻǳǎ ƎŜƻƎǊŀǇƘƛŎŀƭ ǊŜƎƛƻƴǎ όǘŀƎƎŜŘύΣ ŜΦƎΦ ά9ƴƎƭŀƴŘέΣ ά[ƻƴŘƻƴέ ŀƴŘκƻǊ ά¢ƘŜ .ritish

https://github.com/metno/maelstrom-train

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 17

aǳǎŜǳƳέΦ ¢ƻ ŎƻƴŦƛŘŜƴǘƭȅ ƳŀǇ ¢ǿŜŜǘǎ ǘƻ ǇǊŜŎƛǇƛǘŀǘƛƻƴ ǾŀƭǳŜǎΣ ǿŜ ǊŜǉǳƛǊŜ ǘƘŜ ǎƳŀƭƭŜǎǘ ǘŀƎƎŜŘ ǊŜƎƛƻƴ

to have an area at the resolution of the precipitation data (100 km²).

When trying to improve on our initial model, we realised that a major bottleneck for the model is data

quality. Some Tweets clearly stated that it was raining when the precipitation data implied that it was

not raining and vice versa. We therefore decided to move to ERA5-land (see below) as it incorporates

measurement values to boost accuracy.

In addition, we build a dataset based purely on precipitation measurements from weather stations.

For this, we use MIDAS Open (Met Office 2019), which provides hourly weather measurements from

public weather stations in the UK from 1853 to present. We only include Tweets within 1 km of the

ǿŜŀǘƘŜǊ ǎǘŀǘƛƻƴ ǘƻ ŦƻǎǘŜǊ Řŀǘŀ ǉǳŀƭƛǘȅΦ ¢Ƙƛǎ ƭŜŀǾŜǎ ǳǎ опY ¢ǿŜŜǘǎ ǿƛǘƘ пY ¢ǿŜŜǘǎ ƭŀōŜƭƭŜŘ ŀǎ έǊŀƛƴƛƴƎέΣ

which is insufficient to train our model. However, we use this dataset as a final holdout dataset to

evaluate our model performance.

tǊŜŎƛǇƛǘŀǘƛƻƴ Řŀǘŀ ǿŜǊŜ ŀǎǎƛƎƴŜŘ ǘƻ ǘƘŜ ƴŜŀǊŜǎǘ ¢ǿŜŜǘǎΦ ¢ǿŜŜǘǎ ǿŜǊŜ ŀǎǎƛƎƴŜŘ ǘƘŜ ƭŀōŜƭ άǊŀƛƴƛƴƎέ ƛŦ

total precipitation ὴ was larger than a threshold value ὴ , i.e. ὴ ὴ . We set ὴ

πȢππ7 ά as default. In our previous model, the threshold was set at the noise level of the simulation,

which is much lower. However, further evaluation showed that we clearly over-estimated the

presence of rain with this approach as the weather model will have larger inaccuracies at these low

levels of rain. In addition, depending on the region users will probably be more sensitive to the

presence of rain and a faint drizzle even if correctly predicted will not necessarily be considered

άǊŀƛƴƛƴƎέ ōȅ Ƴƻǎǘ ǳǎŜǊǎΦ

For precipitation data, we originally used ECMWF-IFS, but now moved to ERA5-land (Muñoz Sabater

2019), which has a spatial resolution of 0.1 deg and hourly resolution, which is comparable to the

resolution of ECMW-IFS. However ERA5-land is a re-analysis dataset, which incorporates

measurements to boost accuracy. The resulting training dataset contains 500K Tweets labelled as

άǊŀƛƴƛƴƎέ ŀƴŘ тллY ¢ǿŜŜǘǎ ƭŀōŜƭƭŜŘ ŀǎ άƴƻǘ ǊŀƛƴƛƴƎέΦ

3.2.2 Model

hǳǊ ǘŀǎƪ ƛǎ ǘƻ ǇǊŜŘƛŎǘ ǘƘŜ ƭŀōŜƭǎ άǊŀƛƴƛƴƎέ ƻǊ άƴƻǘ ǊŀƛƴƛƴƎέ ŦǊƻƳ ǘƘŜ ǘŜȄǘ ƻŦ Tweets. This can be reduced

to the task of sequence classification, which is a common problem in natural language processing.

Deep learning models based on the popular transformer architecture (Vaswani et al., 2017) deliver

state of the art results in this domain (Kowsari et al. 2019). We use the transformer based DeBERTa

architecture. Here, we use the pre-trained variant DeBERTaV3_small (see D1.2 for further details). As

our data quality seemed to be the main bottleneck, we kept our model architecture unchanged and

rather focused on improving our dataset and model evaluation. However, due to the benchmarks

performed in D3.6, we noticed that while scaling on 4 GPUs compared to 1 GPU is less than ideal,

energy consumption is still more efficient as the remaining 3 GPUs still require significant power in

their idle state. We therefore always train on 4 GPUs now. In addition, we realised that while

evaluation only takes 30 seconds for 50k Tweets, changing to a different architecture like a large

language model (LLM) based architecture may incur considerable bottlenecks when running

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 18

predictions. Additional analysis performed for D3.6 gave us confidence in the performance of our

model as it appears highly optimised, which allowed us to focus more time on improving our dataset.

3.2.3 Results

Our best model achieves an f1-score on the evaluation set based on ERA5-ƭŀƴŘ ƻŦ лΦтп όάƴƻǘ ǊŀƛƴƛƴƎέύ

ŀƴŘ лΦсп όάǊŀƛƴƛƴƎέύΦ ¢Ƙƛǎ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ŀƴ !¦/ ƻŦ лΦтуΣ ǿƘƛŎƘ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ŀ ǎƭƛƎƘǘ ƛƳǇǊƻǾŜƳŜƴǘ

to our previous model (Fig. 5). It appears that the increase in accuracy of precipitation for our new

dataset improved model performance. However, it is apparently not the main bottleneck for the

model. Further analysis revealed instead that the information contained in a significant fraction of

Tweets is not sufficient for a human to correctly classify these Tweets. Just matching by keywords

appears therefore insufficient for selecting relevant Tweets.

Fig. 5: Left: Confusion matrix of our best model for the classification of Tweets aǎ άǊŀƛƴƛƴƎέ ƻǊ άƴƻǘ ǊŀƛƴƛƴƎέΦ wƛƎƘǘΥ

ROC curve for the same model. While the majority of Tweets is correctly classified, further analysis on

misclassified Tweets identified the lack of relevant information in the text to make a correct judgement as the

main source of error.

3.2.4 Future work

A major challenge for this application is selecting Tweets that contain sufficient information to make

the statement about the presence of rain or generally about the state of the weather. Currently, we

filter out Tweets based on keywords. However, keywords can be ambiguous like the British newspaper

Sun, which led us to introduce hand-crafted rules to filter out Tweets with the case-sensitive keyword

ά{ǳƴέΣ ǿƘƛŎƘ ƛǎ ǊŀǘƘŜǊ ƛƴŎƻƳǇƭŜǘŜΦ LƴǎǘŜŀŘΣ ǿŜ ǿƻǳƭŘ ƭƛƪŜ ǘƻ ǳǎŜ ŀ ƳƻŘŜƭ ǘƘat predicts the relevance

of the Tweet for our specific task.

Large language models like ChatGPT (OpenAI 2023) or alternative open source solutions like Falcon

180B (Schmid et al. 2023) provide a new paradigm in the NLP community. Initial manual testing gave

promising results that demonstrated that LLMs can potentially help with this complex task. However,

a major challenge appears to be speeding up the evaluation process as potentially a stream of Tweets

needs to be processed from which relevant Tweets are selected. We therefore plan to finetune an

LLM specifically for our task, which should improve performance.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 19

3.3 AP3: Build neural network emulators to speed-up weather forecast models and

data assimilation

AP3 concerns the emulation of radiative transfer with machine learning. The motivation is the

acceleration through both compression via machine learning and easy use of GPU infrastructure. In

previous deliverables, we focussed on shortwave (SW) radiation, where the sun is the primary source.

We designed a bespoke physics-informed neural network whose architecture mimicked the

conventional physics-based solver. This network belongs to the family of recurrent neural networks

(RNN), here recurrent through the vertical structure of the atmosphere. Leveraging this solution, and

training on the large dataset provided through MAELSTROM, we were able to train highly accurate

emulators of the ECMWF ecRAD Triplecloud solver for the shortwave process. These exhibited RMSE

errors of 0.50 W/m2 for the fluxes and 0.014 K/d for the heating rates on an independent in time test

dataset. In consultation with domain experts, it was decided that this error was sufficiently low to

consider the emulation successful, at least from the perspective of offline errors, i.e. errors when

running the radiative transfer solver decoupled from the weather forecasting model.

Our focus in the time since the last deliverable has been on the longwave (LW) process for radiative

transfer. In combination with shortwave radiation processes, this complements the radiative transfer

task. Longwave emissions primarily originate at the surface, with it being key to identify: how much is

reflected back from the atmosphere to be reabsorbed by the surface, how much is emitted and

absorbed by the atmosphere, and how much flux propagates through the top of the atmosphere.

3.3.1 Data

For this phase of reporting, we continue using the same dataset as described previously, as this was

found to be sufficiently accurate for learning the shortwave process. The dataset contains data for

both shortwave and longwave processes. These can be accessed from the maelstrom -

radiation - tf CliMetLab dataset using the subset = ñtier-2ò argument. The corresponding

dataset comprises 21,640,960 examples. This is to be contrasted with the Tier 1 dataset which

contained only 67,840 examples. We also introduced previously Tier 2 subsets for validation and

testing, accessible with ñtier- 2-valò and ñtier- 2-testò. Each of these contain 407,040

columns from 2019 (training data are taken from 2020). Here, we will present results on the Tier 2

data.

3.3.2 Methodology

Given the success of recurrent neural networks for the shortwave process, we focus our attention on

adapting this solution to the new problem. As the dominant source is the surface, we change the

structure of the RNNs. Scalar surface quantities are passed to a 2-layer multi-layer perceptron (MLP)

enabling the model to process surface quantities. The output of this MLP is provided as an input state

to an RNN which is oriented to propagate vertically up the atmospheric column. At each layer, the

RNN receives the ǇǊŜǾƛƻǳǎ ƭŀȅŜǊǎΩ ƘƛŘŘŜƴ ǎǘŀǘŜ ŀƴŘ ǘƘŜ ŦƻǊŎƛƴƎ ƛǎ ǇǊƻǾƛŘŜŘ ōȅ ŀǘƳƻǎǇƘŜǊƛŎ ǎǘŀǘŜ

variables corresponding to this layer of the atmosphere. This RNN propagates information from the

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 20

surface up through the atmospheric column, incorporating information on the state of the

atmosphere (e.g. temperature, humidity pressure) at each layer. This is followed by a second RNN,

which propagates down the atmospheric column, initialised with the final hidden state of the upward-

propagating and is forced with the output state from the upwards RNN at each layer. The second RNN

enables the propagation of reflectances back down the column all the way to the surface. The output

at each layer from both RNNs is concatenated together and passed through a single MLP, with shared

weights for all vertical layers, which is applied to each layer separately and calculates a normalised

flux profile (i.e. two components downwards and upwards fluxes). For the SW process, fluxes at the

end of the model are scaled by the incoming solar radiation, which simplifies the task for the rest of

the network to only calculating relative fluxes. We adopt this approach for LW, but here the scaling

factor is not known a-priori, but depends on surface properties. We use a 2-layer MLP to calculate this

scaling factor and multiply the downwards and upwards flux profiles by this prediction. Finally, again

based on the success from the SW application, we use the custom physics-informed layer which

calculates the heating rates from the fluxes. This final step does not add further trainable parameters

and the formulation can be found in D1.3.

We test two different RNN blocks, the simpler Gated Recurrent Unit (GRU) and the more complex

Long Short-Term Memory (LSTM). We fix a hidden state of 64 neurons for each MLP and RNN in the

model, having found this to be sufficiently large on preliminary testing. The GRU-based model has

45,221 trainable parameters and the LSTM-based model has 60,261 trainable parameters. As with the

shortwave process, we produce a highly parameter efficient model in contrast to recent publications

using only MLP or convolutional neural networks which use on the order of million parameters

(Lagerquist et al. 2021, Yao et al. 2023).

Exploratory testing was also carried out to test the suitability of other architectures for learning

accurate emulators. Specifically we tested convolutional neural networks, using dilated convolutions

to increase the speed of propagation through the vertical column. Also tested were networks using

the self-attention mechanism that powers transformer architectures. None of the probed models

attained the accuracy of the RNNs as shown in Figure 6.

We minimise the Huber loss, which acts as the mean-absolute-error for values greater than 1 and as

the mean-squared-error for values less than 1. This was found to result in more accurate models,

measured by RMSE, even compared with training directly on RMSE. To combine the loss of two

objectives, we use a weighting of 1 for the fluxes and 100 for the heating rates.

Training was carried out with a batch size of 512, the Adam optimiser, an initial learning rate of 0.001

which decreases if validation scores fail to improve after 4 epochs. Early stopping if scores on the

validation dataset failed to improve after 6 epochs was also used. Training was carried out on a single

NVIDIA A100-40Gb GPU, since larger batch sizes using data-distributed parallel training did not

improve the time-to-solution for the application at hand as shown in previous deliverables. An optimal

solution was reached in approximately 24 hours.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 21

Fig. 6: Mean-squared-error (MSE) performance on test dataset for longwave fluxes (left) and longwave

heating-rates (right), comparing model designs featuring GRU-type RNNs and LSTM-type RNNs. LSTMs reduced

errors for both fluxes and heating rates by approximately 10%.

3.3.3 Results

Compared to the shortwave solver, where our leading solution attained an RMSE of 0.50 W/m2 for the

fluxes and 0.014 K/d for the heating rates, we now see that estimating the fluxes results in slightly

smaller errors (0.43 W/m2), whereas the heating rate errors are larger (0.042 K/d). This is consistent

with challenges in the dataset, as the magnitude of incoming shortwave radiation is significantly larger

than for longwave, whereas the heating rate profiles for longwave radiation are more complex in their

vertical structure. This is demonstrated in the plots below which show sample predictions for

shortwave and longwave processes (Fig. 7 and 8).

Fig. 7 : Sample profiles of predictions from the leading SW RNN model. Columns indicate different profiles, with

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 22

rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines

coincide almost everywhere, illustrating the high quality of prediction.

Fig. 8: Sample profiles of predictions from the leading LW RNN model. Columns indicate different profiles, with

rows corresponding to the downwards flux, upwards flux and resulting heating rate. Blue and orange lines

coincide almost everywhere, illustrating the high quality of prediction.

3.3.4 Code

The code for the longwave training has been added to the benchmark code in the MAELSTROM

Radiation repository, https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation. Once pip

installed, training can be invoked from the command line with

radiation - benchmarks - lw

which runs an example on the tier 1 dataset. Training for the optimal longwave model can be achieved

with

radiation - benchmarks - lw -- epochs 100 -- tier 2 -- batch 512

3.3.5 Future work

As with the shortwave process, we believe that these errors are low enough to satisfy offline testing.

Over the remainder of the project we will focus on two aspects: Firstly, online testing, i.e. coupling

both solvers simultaneously to the IFS and testing forecast accuracy and stability. Secondly, generating

tangent-linear and adjoint versions of the shortwave and longwave processes. These gradient versions

https://git.ecmwf.int/projects/MLFET/repos/maelstrom-radiation

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 23

of the neural network have value within data assimilation, particularly variational approaches such as

4D-var which seeks to optimise forecast trajectories by propagating gradients through the full

forecasting system. This requires accurate and fast gradient models for each component, which

necessitates significant personnel investment to develop and maintain. Currently, the tangent-linear

ŀƴŘ ŀŘƧƻƛƴǘ ƳƻŘŜƭǎ ŦƻǊ ǘƘŜ ǇƘȅǎƛŎŀƭ ǊŀŘƛŀǘƛǾŜ ǘǊŀƴǎŦŜǊ ǎŎƘŜƳŜ ƛƴ 9/a²CΩǎ LC{ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ŀƴ ƻƭŘŜǊ

version of the radiation scheme. If the gradient information provided by an automatically

differentiated neural network version of the radiative transfer process is sufficiently accurate, this

would improve the correspondence between forward and gradient models and could significantly

improve initial conditions and resulting weather forecasts.

3.4 AP4: Improve ensemble predictions in forecast post-processing

Over the past few years, there has been a growing interest in ensemble post-processing techniques

aimed at enhancing forecast accuracy. These methods involve adjusting the distribution of output

from ensemble weather prediction models to eliminate biases, a process known as prediction

correction. They play a crucial role in enhancing the overall quality of ensemble forecasts.

The primary objective of AP4 is to enhance the performance and reliability of machine learning-based

models within the context of ensemble post-processing, also known as forecast post-processing. In

pursuit of this goal, we have taken the initiative to introduce the ENS-10 (Ashkboos et al., 2022)

dataset. This dataset comprises ten ensemble members, encompassing a time span of two decades,

from 1998 to 2017. Our approach involves the application of various machine learning models to this

extensive dataset, with the aim of advancing the state-of-the-art in ensemble post-processing

techniques

3.4.1 I/O Bottleneck

In our previous deliverable, D1.3, we conducted an assessment of the effectiveness of implementing

a U-Net style model on the ENS-10 dataset. In this evaluation, we carefully analysed the time allocation

between forward and backpropagation processes for each batch and epoch. Our findings indicated a

significant bottleneck in the training process due to input/output (I/O) operations. Therefore, it is

evident that any future efforts aimed at enhancing performance should prioritise optimization at this

particular stage of the application.

This deliverable primarily focuses on optimising the overall runtime performance of our model by

addressing a critical aspect: input/output (I/O) operations. As part of our investigation, we have

recognized that the current practice of saving our dataset in NetCDF format and conducting

computations during the data loading phase introduces a substantial I/O overhead that significantly

impacts the efficiency of our neural network training process.

To elaborate, our focus is on streamlining the end-to-end execution of our model, encompassing data

handling and neural network training. A key observation is that the choice of saving the dataset in the

NetCDF format, while beneficial for structured data storage, brings with it the challenge of I/O

efficiency during the training phase. When we perform computations on-the-fly during data loading,

it results in increased reading times and consequently slows down the overall training process.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 24

3.4.2 NumPy and NetCDF Formats

Table 3 illustrates the distinctions between the utilisation of NetCDF and NumPy formats. In our efforts

to address the I/O challenges, we are contemplating a potential solution: preprocessing the entire

dataset by performing all necessary computations, such as normalisation and slicing, and

subsequently storing the resulting data in NumPy format.

Use Case NetCDF Format NumPy Format

Data Conversion Ease (to
PyTorch Tensors)

Requires additional steps for
data conversion. PyTorch does
not have built-in support for
direct conversion from NetCDF
files, necessitating custom
code or external libraries for
the conversion.

Offers straightforward
conversion as PyTorch
seamlessly supports direct
conversion from NumPy arrays
using torch.from_numpy().

Conversion Speed and
Efficiency

Conversion from NetCDF to
PyTorch tensors may involve
reading and copying data,
potentially resulting in
increased conversion times,
especially for large datasets.

Conversion from NumPy arrays
to PyTorch tensors is generally
efficient, with minimal
overhead, making it suitable
for quick data loading and
model training.

Memory Usage NetCDF format may involve
reading data into memory,
potentially consuming more
memory during conversion,
especially for large datasets.

NumPy arrays are memory-
efficient, and PyTorch can
efficiently create tensors from
NumPy arrays without
significant memory overhead.

Compression and File Size
Optimization

Offers built-in compression
options for reducing file sizes
while preserving data integrity.

Compression can be applied
externally but requires more
manual configuration
compared to NetCDF's built-in
compression.

Data Complexity Ideal for complex data with
numerous dimensions and
associated metadata, such as
climate data, geospatial data,
and model outputs.

Suitable for a wide range of
numerical data but may lack
the structure needed for
complex, multidimensional
data.

Table 3: Comparison between data provision using the NetCDF and NumPy format. We fix our I/O issue by saving

the whole ENS-10 dataset in NumPy format and applying the normalizations offline.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 25

3.4.3 Results

To assess the effectiveness of our I/O enhancements, we conducted training experiments utilising the

U-Net network architecture as described in the work by Ashkboos et al. (2022) on the ENS-10 dataset.

Our U-Net model consists of three hierarchical levels, each comprising a sequence of modules,

including convolution, batch normalisation, and ReLU activation functions.

For data input, the network operates on the entire grid and processes data with 22 input dimensions

for surface features and 14 input dimensions for volumetric features. This corresponds to two inputs

per variable present in the ENS-10 dataset, facilitating comprehensive data representation. In terms

of network architecture, we employed convolutional layers with 32 output channels in the first level,

64 output channels in the second level, and 128 output channels in the third level of our U-Net model.

For all experiments, we use a single 40 GB A100 GPU from ETH computing resources using CUDA 11.7

and train our model for three epochs. We use PyTorch 2.0.0 to implement our code and run the

experiments. We train each model using three different random seeds and report the mean and

standard deviation. Batch, forward, and backward time was measured using GPU-side timing.

Metric Min(s) Max(s) Median(s) Mean(s) Std(s)

Epoch 1098.97 1102.71 1101.08 1100.92 1.87

Batch 1058.43 1062.31 1061.08 1060.61 1.98

Forward 26.91 27.94 27.92 27.59 0.59

Backward 12.47 13.09 12.60 12.72 0.32

Table 4: The Benchmarking results for AP4 using NetCDF format.

Metric Min(s) Max(s) Median(s) Mean(s) Std(s)

Epoch 214.75 226.27 220.20 220.40 5.76

Batch 172.11 183.01 177.28 177.47 5.45

Forward 30.31 30.42 30.33 30.36 0.057

Backward 12.323 12.84 12.56 12.59 0.25

Table 5: The Benchmarking results for AP4 using NumPy format.

Tables 4 and 5 show the results of our experiments using the NetCDF and NumPy formats. We get up

to the 4.9x speed-up by using NumPy data format in our experiments. Specifically, the mean time of

each epoch is reduced from 1100.92s to 220.4s.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 26

3.5 AP5: Improve local weather predictions in forecast post-processing

AP5 explores the application of deep neural networks for statistical downscaling of meteorological

fields.

So far, the statistical downscaling models have been developed in an end-to-end approach. This means

that task-specific neural networks have been trained from scratch using pairs of coarse-grained input

and high-resolved target data. However, pairing of input and target data often limits the amount of

training samples since both datasets must cover the same time period and region for this purpose. In

the case of the Tier 2-dataset, the ERA5-reanalysis, which serves as the coarse-grained input, provides

global data from 1979 until near real-time. By contrast, the high-resolved targeted COSMO REA6-

reanalysis constitutes a regional dataset whose temporal coverage is restricted from Jan 1995 to

August 2019. Thus, large parts of the ERA5-reanalysis dataset cannot be leveraged during training in

an end-to-end approach.

Inspired by the recent success of foundation models in natural language processing (see, e.g., Zhou et

al., 2023), we therefore explore the applicability of the large-scale representation model for

atmospheric dynamics AtmoRep (Lessig et al., 2023) in scope of this deliverable. AtmoRep constitutes

a task-agnostic generative neural network that is considered to be suitable for a wide range of

meteorological applications and thus represents a foundation model (Bommasani et al., 2021). By

pretraining the encoder-decoder transformer network of AtmoRep on (nearly) the complete ERA5

reanalysis dataset, a powerful abstraction of the atmospheric state can be obtained. This abstraction

can then be exploited when finetuning a task-specific network extension (encoder-decoder of

AtmoRep +tail network) for statistical downscaling.

A compact overview on AtmoRep and its application for statistical downscaling is provided in the

following. For a detailed description of AtmoRep, we refer however to Lessig et al. (2023) and its

comprehensive supplement.

3.5.1 The AtmoRep model and fine-tuning for downscaling

Mathematically, AtmoRep is built on the description of the atmospheric state as a stochastic

dynamical model (see, e.g., Hasselmann, 1976 and Palmer et al., 2008). With this, the probability for

a state ώ given the input atmospheric state●ᴆ is described as a conditional probability distribution

ὴώȿὼȟ‌. The input state ὼ can, for instance, be the atmospheric state at time ὸ, whereas ώ

represents the atmospheric state at a later time ὸ ὸ ῳὸ. The atmospheric state is here

complemented by ‌ which may provide auxiliary information such as the year information to encode

global climate forcing. Since no analytical description of the highly complex and non- stationary

stochastic system is available, AtmoRep makes use of the approximation

ὴ ώȿὼȟ‌ ὴώȿὼȟ‌

where ὴ ώȿὼȟ‌ constitutes an encoder-decoder neural network based on Transformer blocks

(Vaswani et al., 2017). As already mentioned, the ERA5 reanalysis dataset serves as input data,

providing the most accurate, available estimate on the global atmospheric state. Specifically, different

state variables such as the 3D wind-vector, the temperature or the specific humidity on different

model levels are inputted in the form of gridded data within local space-time cubes (e.g. 36h x 5

vertical levels x 1800 km x 1800 km). To learn an abstract representation of the atmospheric dynamics,

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 27

the data cubes are tiled into patches in analogy to tokens in computer vision (Dosovitskiy et al., 2020).

During training, a random subset of the tokens gets masked or distorted and the encoder-decoder

network is asked to reconstruct these tokens. This strategy of self-supervised training is inspired by

the BERT training strategy suggested in Devlin et al., 2018. Here, high masking ratios have been found

to promote learning of robust representations.

AtmoRep thereby constitutes a probabilistic model by outputting an ensemble for the intrinsically

uncertain dependant state ώ. A novel statistical ensemble loss that measures the distance between

the (deterministic) ground truth data and the probabilistic prediction with the help of a Gaussian fit is

used as a training objective combined with the usual MSE-loss. A conceptual illustration of AtmoRep

is provided in Figure 9.

For efficiency reasons and for the sake of a modular model design, the pre-training is performed as a

two-step approach. At first, state variable-specific encoder-decoder networks (Singleformers) are

trained individually until convergence, i.e. ὼ and ώ are just expressed by a single variable on multiple

levels in the Singleformers. Second, different variables are coupled together via cross-attention

between the variable-specific Transformer layers of the encoder and training of the resulting

Multiformer is continued to obtain a more complete abstraction of the atmospheric dynamics. This

approach has the advantage of saving computation time, since the optimization converges quickly in

the latter step, while the cross-attention operations scale quadratically as opposed to the self-

attentions. Furthermore, task-specific configurations with different variables become possible

through the two-step training approach and the modular design.

For the downscaling task, the horizontal wind vector components as well as the temperature on model

levels 137, 123, 114, 105 and 96 are used since this information is considered to be the most relevant

for the subsequent downscaling of the 2m temperature field. The Singleformers of the three variables

have been trained individually on 8 nodes (32 GPUs) of Juwels Booster for several days. Subsequently,

the Multiformer is trained, before AtmoRep gets extended with a task-specific tail network for

downscaling. The tail network comprises 6 transformer blocks consisting of transformer layers with

16 attention heads and two multilayer perceptrons. To increase the spatial resolution of the data, the

ƻǳǘǇǳǘ ǘƻƪŜƴǎ ƻŦ !ǘƳƻwŜǇΩǎ ŘŜŎƻŘŜǊ ƎŜǘ ƛƴŎǊŜŀǎŜŘ ōȅ ŀ ŦŀŎǘƻǊ ƻŦ п ǘƻƎŜǘƘŜǊΦ ¢ƘŜ ƛƴŎǊŜŀǎŜŘ ƴǳƳōŜǊ

of tokens also require embedding (linear layer) with an updated local positional encoding, while the

embedding dimension also gets doubled. In contrast to the three Singleformers and the Multiformer

only data from model level 137 is used in the fine-tuning step.

During fine-tuning, the parameters of the encoder-decoder as well as the tail network are optimised,

resulting in about 1.85 billion trainable parameters. Model parallelism is required to fit the network

on the computing nodes of Juwels Booster, where the three state variable-specific transformers and

the tail network are placed on one GPU each. The finetuning is run for three days on eight nodes.

MAELSTROM 2023

D1.4 Revisions of customised ML solutions for enhanced datasets 28

Fig. 9: Illustration of the self-supervised training of AtmoRep. Local space-time data cubes of state variables are

sampled and then tailed into tokens of which a random subset gets masked. AtmoRep then reconstructs the data

of the masked tokens with an ensemble prediction. The statistical loss is then used for optimization.

3.5.2 Dataset

While the pre-training of the Singleformers and the Multiformer are solely performed with the global

ERA5-reanalysis dataset (from 1979 to 2017), the subsequent finetuning requires pairing with the

COSMO REA6 dataset. Contrarily to the Tier-2 dataset used in previous deliverables, the underlying

shared grid projection of the data is changed from the rotated pole grid of the COSMO REA6-dataset

to the regular (lat, lon)-grid onto which the ERA5 reanalysis is provided. The input ERA5-data is defined

on a 0.25°-grid, while the COSMO REA6-data is remapped on a 0.0625°-grid following the procedure

described in deliverable 1.1.

Variable (variable name) Model levels Data Source (grid
spacing)

Input/Output

temperature (t) 96***, 105***, 114***,
123***, 137***

ERA5 (0.25°) Input

u-wind (u) 96**, 105**, 114**,
123**, 137***

ERA5 (0.25°) Input

v-wind (v) 96**, 105**, 114**,
123**, 137***

ERA5 (0.25°) Inout

surface geopotential (z)* - ERA5 (0.25°) Input

2m temperature (t_2m) - COSMO REA6 (0.0625°) Output

surface topography (hsurf)* - COSMO REA6 (0.0625° Input/Output

Table 6: Overview of input and output variables used for the 2m temperature downscaling task. Variables

denoted with * served as auxiliary input/output variables for the competing WGAN. Data on model levels

