
MAchinE Learning for Scalable
meTeoROlogy and cliMate

Mid term hardware
performance

benchmarking

E4 Computer Engineering

www.maelstrom-eurohpc.eu

www.maelstrom-eurohpc.eu

D3.6 Report on hardware
performance benchmarking for ML
solutions from D1.3 on a number of
hardware configurations

Author(s): E4 Computer Engineering

Mattia Paladino (E4), Daniele Gregori (E4)

Dissemination Level: Public

Date: May 12, 2023

Version: 1.0

Contractual Delivery Date: 05/2023

Work Package/ Task: WP3/ T3.3

Document Owner: E4 Computer Engineering

Contributors: FZJ

Status: Final

MAELSTROM
Machine Learning for Scalable Meteorology and
Climate

Research and Innovation Action (RIA)
H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and
Applications

Project Coordinator: Dr. Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:
ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom
Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertak-
ing (JU) under grant agreement No 955513. The JU re-
ceives support from the European Union’s Horizon 2020
research and innovation programme and United King-
dom, Germany, Italy, Luxembourg, Switzerland, Norway.

mailto:Peter.Dueben@ecmwf.int

Contents

1 Executive Summary 10

2 Introduction 11
2.1 About MAELSTROM . 11

2.2 Scope of this deliverable . 11

2.2.1 Objectives of this deliverable . 11

2.2.2 Work performed in this deliverable 12

2.2.3 Computing configuration and Storage 12

2.2.4 Deviations and counter measures . 13

3 Metrics 14

4 Benchmarks 16
4.1 AP1 . 17

4.1.1 Notes . 17

4.1.2 JUWELS Booster . 19

4.1.3 JUWELS Cluster . 23

4.1.4 E4 Intel System . 25

4.1.5 E4 AMD System . 30

4.1.6 Results . 34

4.2 AP2 . 35

4.2.1 Notes . 35

4.2.2 JUWELS Booster . 38

4.2.3 JUWELS Cluster . 41

4.2.4 E4 Intel System . 43

4.2.5 E4 AMD System . 48

4.2.6 Results . 51

4.3 AP3 . 53

4.3.1 Notes . 53

4.3.2 JUWELS Booster . 55

4.3.3 JUWELS Cluster . 59

4.3.4 E4 Intel System . 63

4.3.5 E4 AMD System . 67

4.3.6 Results . 72

4.4 AP4 . 73

4.4.1 Notes . 73

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 4

4.4.2 JUWELS Booster . 74

4.4.3 JUWELS Cluster . 76

4.4.4 E4 Intel System . 78

4.4.5 Results . 80

4.5 AP5 . 81

4.5.1 Notes . 81

4.5.2 JUWELS Booster . 83

4.5.3 JUWELS Cluster . 87

4.5.4 E4 Intel System . 90

4.5.5 E4 AMD System . 94

4.5.6 Results . 97

4.6 AP6 . 98

4.6.1 Notes . 98

4.6.2 JUWELS Booster . 100

4.6.3 JUWELS Cluster . 102

4.6.4 E4 Intel System . 104

4.6.5 Results . 105

5 Conclusion 106

6 Appendix 107
6.1 AP1 . 108

6.2 AP2 . 112

6.3 AP3 . 117

6.4 AP4 . 124

6.5 AP5 . 126

6.6 AP6 . 133

List of Figures

1 AP1 JUWELS Booster Runtime . 20

2 AP1 JUWELS Booster Epoch Time . 20

3 AP1 JUWELS Booster Energy . 21

4 AP1 JUWELS Booster Inference Runtime . 22

5 AP1 JUWELS Booster Energy . 22

6 AP1 JUWELS Cluster Runtime . 23

7 AP1 JUWELS Cluster Epoch Time . 24

8 AP1 JUWELS Cluster Energy . 24

9 AP1 E4 Intel System Runtime . 25

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 5

10 AP1 E4 Intel System Energy . 26

11 AP1 E4 Intel System Action . 27

12 AP1 E4 Intel System Inference Runtime . 28

13 AP1 E4 Intel System Energy . 29

14 AP1 E4 Intel System Action . 29

15 AP1 E4 AMD System Runtime . 30

16 AP1 E4 AMD System Energy . 31

17 AP1 E4 AMD System Action . 31

18 AP1 E4 AMD System Inference Runtime . 32

19 AP1 E4 AMD System Energy . 32

20 AP1 E4 AMD System Action . 33

21 AP2 JUWELS Booster Runtime . 38

22 AP2 JUWELS Booster Energy . 39

23 AP2 JUWELS Booster Inference Runtime . 39

24 AP2 JUWELS Booster Energy . 40

25 AP2 JUWELS Cluster Runtime . 41

26 AP2 JUWELS Cluster Energy . 42

27 AP2 JUWELS Cluster Inference Runtime . 43

28 AP2 JUWELS Cluster Energy . 43

29 AP2 E4 Intel System Inference Runtime . 44

30 AP2 E4 Intel System Energy . 45

31 AP2 E4 Intel System Action . 45

32 AP2 E4 Intel System Inference Runtime . 46

33 AP2 E4 Intel System Energy . 46

34 AP2 E4 Intel System Action . 47

35 AP2 E4 AMD System Runtime . 48

36 AP2 E4 AMD System Energy . 49

37 AP2 E4 AMD System Action . 49

38 AP2 E4 AMD System Inference Runtime . 50

39 AP2 E4 AMD System Energy . 51

40 AP2 E4 AMD System Action . 51

41 AP3 JUWELS Booster Runtime . 56

42 AP3 JUWELS Booster Epoch Time . 57

43 AP3 JUWELS Booster Energy . 57

44 AP3 JUWELS Booster Inference Runtime . 58

45 AP3 JUWELS Cluster Runtime . 60

46 AP3 JUWELS Cluster Epoch Time . 61

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 6

47 AP3 JUWELS Cluster Energy . 61

48 AP3 JUWELS Cluster Inference Runtime . 62

49 AP3 E4 Intel System Runtime . 64

50 AP3 E4 Intel System Epoch Time . 65

51 AP3 E4 Intel System Energy . 65

52 AP3 E4 Intel System Action . 66

53 AP3 E4 Intel System Inference Runtime . 67

54 AP3 E4 AMD System Runtime . 68

55 AP3 E4 AMD System Epoch Time . 69

56 AP3 E4 AMD System Energy . 70

57 AP3 E4 AMD System Action . 70

58 AP3 E4 AMD System Inference Runtime . 71

59 AP4 JUWELS Booster Runtime . 74

60 AP4 JUWELS Booster Epoch Time . 75

61 AP4 JUWELS Booster Energy . 76

62 AP4 JUWELS Cluster Runtime . 76

63 AP4 JUWELS Cluster Epoch Time . 78

64 AP4 E4 Intel System Epoch Time . 79

65 AP4 E4 Intel System Epoch Time . 80

66 AP5 JUWELS Booster Runtime . 84

67 AP5 JUWELS Booster Epoch Time . 85

68 AP5 JUWELS Booster Energy . 85

69 AP5 JUWELS Booster Inference Runtime . 86

70 AP5 JUWELS Cluster Runtime . 87

71 AP5 JUWELS Cluster Epoch Time . 88

72 AP5 JUWELS Cluster Energy . 89

73 AP5 JUWELS Cluster Inference Runtime . 90

74 AP5 E4 Intel System Runtime . 91

75 AP5 E4 Intel System Epoch Time . 91

76 AP5 E4 Intel System Energy . 92

77 AP5 E4 Intel System Action . 92

78 AP5 E4 Intel System Inference Runtime . 93

79 AP5 E4 AMD System Runtime . 94

80 AP5 E4 AMD System Epoch Time . 95

81 AP5 E4 AMD System Energy . 95

82 AP5 E4 AMD System Action . 96

83 AP5 E4 AMD System Inference Runtime . 97

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 7

84 AP6 JUWELS Booster Runtime . 101

85 AP6 JUWELS Booster Epoch Time . 101

86 AP6 JUWELS Booster Energy . 102

87 AP6 JUWELS Cluster Runtime . 103

88 AP6 JUWELS Cluster Epoch Time . 104

89 AP6 JUWELS Cluster Energy . 104

List of Tables

1 Configuration of each experiment number performed on Juwels Booster 100

2 Configuration of each experiment number performed on Juwels Cluster 102

3 Training on E4 Intel System . 105

4 AP1 JUWELS Booster training benchmark 108

5 AP1 JUWELS Cluster training benchmark 109

6 AP1 E4 Intel System training benchmark. 109

7 AP1 E4 AMD System training benchmark 110

8 AP1 JUWELS Booster inference benchmark 110

9 AP1 E4 Intel System inference benchmark. 111

10 AP1 E4 AMD System inference benchmark. 111

11 AP2 JUWELS Booster training benchmark 112

12 AP2 JUWELS Cluster training benchmark 112

13 AP2 E4 Intel System training benchmark. 113

14 AP2 E4 AMD System training benchmark. 114

15 AP2 JUWELS Booster inference benchmark 115

16 AP2 JUWELS Cluster inference benchmark 115

17 AP2 E4 Intel System inference benchmark 116

18 AP2 E4 AMD System inference benchmark 116

19 AP3 JUWELS Booster training benchmark 118

20 AP3 JUWELS Cluster training benchmark 118

21 AP3 E4 Intel System training benchmark 119

22 AP3 E4 AMD System training benchmark 119

23 AP3 JUWELS Booster inference benchmark 120

24 AP3 JUWELS Cluster inference benchmark 121

25 AP3 E4 Intel System inference benchmark 122

26 AP3 E4 AMD System inference benchmark 123

27 AP4 JUWELS Booster training benchmark 124

28 AP4 JUWELS Cluster training benchmark 125

29 AP4 E4 Intel System training benchmark 125

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 8

30 AP5 JUWELS Booster training benchmark 127

31 AP5 JUWELS Cluster training benchmark 128

32 AP5 E4 Intel System training benchmark 129

33 AP5 E4 AMD System training benchmark 130

34 AP5 JUWELS Booster inference benchmark 130

35 AP5 JUWELS Cluster inference benchmark 131

36 AP5 E4 Intel System inference runtime. 131

37 AP5 E4 AMD System inference benchmark 132

38 AP6 JUWELS Booster training benchmark 133

39 AP6 JUWELS Cluster training benchmark 133

40 AP6 E4 Intel System training benchmark 134

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 9

1 Executive Summary

Based on the results of the early benchmarking described in D3.4, a second phase

of benchmarking was conducted to investigate the applications performance fur-

ther. This second phase of benchmarking aimed to identify areas for improvement

and optimization of the application’s utilization of the available hardware, taking

into account the performance metrics established in the early benchmarking. In

the second phase of benchmarking, we have expanded our evaluation platform to

include a wider range of hardware configurations, allowing us to assess how the

MAELSTROM applications performed on a more diverse set of systems. By analyz-

ing the application’s performance on these different configurations, we were able

to identify specific hardware setups that were particularly effective in optimizing

performance and energy efficiency. Furthermore, by comparing the results of the

second phase of benchmarking to the earlier benchmarks, we were able to assess

the effectiveness of the optimizations made to both the applications and hardware

systems. This allowed us to identify areas for further improvement and to make

informed decisions about the hardware systems that should be used for future

benchmarks.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 10

2 Introduction

2.1 About MAELSTROM

MAELSTROM aims to create Europe’s next-generation computer architecture by

co-designing custom compute system designs for optimal application performance

and energy efficiency, along with a software framework to improve usability and

training efficiency for large-scale machine learning applications in weather and cli-

mate science.

To achieve this, MAELSTROM will benchmark these applications across various com-

puting systems based on energy consumption, time-to-solution, numerical preci-

sion, and solution accuracy. Customised compute systems will be designed that

are optimised for application needs in order to enhance Europe’s high-performance

computing portfolio and to pull recent hardware developments towards the unique

requirements of weather and climate applications. The MAELSTROM software frame-

work will enable scientists to apply and compare machine learning tools and li-

braries across a wide range of computer systems with ease. This will be supported

by a user interface that links application developers with compute system design-

ers. Also, during the development phase, automated benchmarking and error de-

tection of machine learning solutions will be conducted. These tools will be pub-

lished as open source.

The MAELSTROM machine learning applications will cover all the key components

involved in the workflow of weather and climate predictions. This includes process-

ing of observations, assimilation of observations to generate initial and reference

conditions, model simulations, as well as post-processing of model data and de-

velopment of forecast products. For each application, benchmark datasets with up

to 10 terabytes of data will be available online for training and machine learning

tool-development on the fastest supercomputers in the world. The machine learn-

ing solutions developed by MAELSTROM will serve as a blueprint for future machine

learning applications on supercomputers.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

Deliverable 3.6 is a report on the work done for Task 3.3, as mid term benchmarking

of ML solutions depicted in D1.3 on a wider range of hardware and monitoring tools

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 11

to investigate new configuration compared to D3.4. New monitoring tools include

intelligent Poweer Distribution Unit (PDUs) adopted in E4 premesis to measure the

overall power of each single server. Jube monitoring software developed at JSC to

collect information from OS and applications sensors (i.e. GPU power, job execution

time, data load time).

Deliverable 3.6 is the second MAELSTROM deliverables that provide the basis to

benchmark the applications on HPC hardware. It provides a large variety of metrics

and plot related to application executions on heterogeneous HPC systems to allow

performance evaluation.

2.2.2 Work performed in this deliverable

The performance evaluation metrics were agreed upon with the WP1 application

developers and are the same as those used in the previous benchmarking phase

in D3.4 with the addition of some new metrics related to the energy consumption

of each node. A spreadsheet was provided to the application developers to enter

their benchmark results on the available HPC machines.

In the second benchmarking phase, application developers were granted access

to resources at JSC and E4. Information on system access, benchmark runs, and

metric measurement was compiled and documented on the project’s Confluence

page, where it was accessible to all project members.

The application developers ran the benchmarks, and the results were recorded in

the spreadsheet.

The results were analyzed to examine performance, scalability behavior, energy ef-

ficiency, and potential issues. In this phase, we used multiple evaluation platforms

with different configurations to ensure a thorough analysis of the applications’ per-

formance.

2.2.3 Computing configuration and Storage

The computational systems used are the same as those described in deliverable

D3.3. ARM architectures and modifications to previous configurations, in terms of

RAM, A100x accelerators, and FPGAs were proposed to the developer community.

However, these alternatives have not been utilised yet as additional work on the

instalation of machine learning libraries and the porting of the applications is re-

quired.

From the previous experience gained in D3.4, special attention was paid in this

deliverable to the use of data storage systems to understand which ones improve

performance. Two types of data areas were available at E4: a common area ex-

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 12

ported among all nodes via NFS protocol with a 1 Gb/s bandwidth limit, and a local

disk in NVMe technology with single-stream sequential write and read performance

of 2.5 GB/s and 1 GB/s. Although the NFS filesystem is limited by Ethernet net-

work bandwidth it has enabled caching. After the first read of the dataset, the data

resides on the local memory of the compute server improving the load time of sub-

sequent training.

Two types of parallel filesystems were provided at the JSC center, both based on

GPFS, whose performance is described in this paper1. The High-Performance Stor-

age Tier (HPST) is a specialized low-capacity tier that uses non-volatile memory

technologies (NVMe) to optimize performance. Acting as a cache layer on top of

the SCRATCH file system, the HPST provides high bandwidth and low latency ac-

cess for I/O in compute jobs. The HPST is based on the "Infinite Memory Engine

(IME)" architecture, developed by DataDirect Networks (DDN). Using a client-server

model, the server creates a cache on top of the SCRATCH file system, mounted on

all servers, and utilizes the 10 NVMe disks on each server for cache storage. With

up to 2 TB/s bandwidth for optimized parallel I/O, a single client node can achieve

up to 8 GB/s. Data can be staged in and out of the underlying SCRATCH file system

using special commands. Data allocated or prestaged on the HPST can be accessed

using POSIX, MPI-IO (when compiled using ParaStationMPI, otherwise it defaults to

POSIX) or the IME native interface. Our initial experience shows that both MPI-IO

and IME native can result in better performance, but do require some recompil-

ing or porting efforts. Additionally, we have identified that single process access

with specific patterns to the SCRATCH file system can be faster than POSIX access

to HPST. This can be explained by the IME client’s use of FUSE in Direct-IO mode

limiting file system Readahead and caching.

2.2.4 Deviations and counter measures

The deliverable was delayed by 6 weeks due to the need for additional time to

collect and analyze the data.

1https://jlsrf.org/index.php/lsf/article/view/180/pdf

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 13

https://jlsrf.org/index.php/lsf/article/view/180/pdf

3 Metrics

The metrics selected for performance evaluation fall into four categories: time-

related metrics, model-related metrics, energy-related metrics and general score

metric. The following metrics have been measured and documented for all of the

applications:

• Time-related

– Total runtime

– Total training time

– Loading Data Time

– Min. training time per epoch

– Max. training time per epoch

– Avg. training time per epoch

– First epoch training time

– Avg. training time per iteration

– Saving model time

• Model-related

– Final training loss

– Final validation loss

• Energy-related

– Max. GPU power

– GPU energy consumption

– Total node energy consumption

• General Score

– Action

From a general benchmarking perspective, metrics such as total runtime, training

time, and data loading and storing times are relevant. Timing metrics provided by

the ML frameworks, such as epoch training time, are also included. Additionally, the

final training and validation loss metrics are important from the ML perspective. In

order to measure energy efficiency, we have recorded the power and energy con-

sumption of the GPU, as well as the energy consumption of the nodes used in the

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 14

benchmarks. Moreover, we defined a general score metric named "Action", the

name is due to the metric unit energy × time, that shows the server quality related

to the application, the value that minimize the action represents the best configu-

ration that optimize the application execution performance.

In E4 premises, the node power consumption was recorded for all benchmarking

runs in this phase thanks to the presence of an intelligent Power Distribution Unit

(PDU), which allows the overall power measurement of the single server node and

enables the automatic recording of power consumption data at regular intervals

during the benchmarking runs. The GPU power consumption could be obtained

via commands nvidia-smi for NVIDIA GPU and rocm-smi for AMD GPU. However,

single GPU power consumption is not available because the required Jube interface

hasn’t been configured yet.

In Julich premesis the infrastructure for measuring GPU and full-node energy con-

sumption is currently under development. However some tools are already avail-

able. On JSC systems, GPU power consumption is provided by the LLview2 job report

- internally, nvidia-smi is used to measure GPU power periodically during the job

execution. The recorded power consumption data was then used to calculate the

energy efficiency metrics for each benchmarking run.

2https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/_node.html

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 15

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/_node.html

4 Benchmarks

Applications were mainly benchmarked on 4 different systems: JUWELS Booster,

JUWELS Cluster, E4’s Intel Cluster, and E4’s AMD Cluster. The focus was both on

training benchmarks and inference performance. For some applications, multiple

configurations were investigated. In cases where inconsistencies were found in the

metrics of the first 3 runs, the developers were asked to perform more measure-

ments.

In addition to the metrics mentioned in Section 3, job-specific information was

recorded for each job, which enables querying of job-specific information at a later

stage. The following details were recorded:

• Number of CPUs used

• Number of GPUs used

• Number of Nodes used

• Number of MPI tasks

• Job ID

• Node IDs

For each of the applications an overview of the application is given, including the

following characteristics of the application:

• Memory training dataset

• Memory validation dataset

• Training samples

• Input shape sample

• batch size

• Trainable parameters

• Non-trainable parameters

• Loss function

• Experimental notes

In the following sections, we provide new interpretations of the benchmark data,

while the total raw data is available in the appendix.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 16

4.1 AP 1

4.1.1 Notes

Deliverables D1-3 and D3-4 revealed that data loading was a major bottleneck

for AP1. Since then, the data loader has been rewritten to improve performance.

Earlier implementations achieved a processing performance of 0.09 GB/s (20.9 GB

in 218 seconds) in D3-4 and 0.42 GB/s (13.74 GB in 32.8 seconds) in D1-3. The

new implementation increases the performance significantly, achieving processing

speeds above 1.4 GB/s. The new data loader delivers data roughly at the rate that

the GPUs can consume the data in training and is no longer a bottleneck.

The data loader is critical for this application, because the data is too large to fit in

main memory (6TB) and must therefore be streamed from disk. For this reason, a

smaller 330 GB dataset has been used in order to make the benchmark less time

consuming, but still realistic. The goal of the AP1 loader is to be both efficient and

to allow for some flexibility in changing the input data on the fly, for example via

options for the patching of data in space, extra features to generate the data, and

data normalization. The main challenge was to allow for arbitrary patching of the

data, since extracting a single patch requires non-sequential interleaved access to

the data.

The following work has been performed since the last deliverables to improve the

data loader:

• Implemented a 5 stage processing pipeline (reading, feature extraction, pre-

dictor normalization, patching, and target normalization), where each stage is

run in paralllel.

• After reading a file, splitting the data and processing chunks in parallel before

merging them at the end.

• Forcing the processing steps to run on the CPUs, instead of on GPUs.

• Ensuring that the data reading stage is only able to use one thread. This pre-

vents too many files to be loaded at once, which causes memory exhaustion,

even with 512GB of RAM.

• Implemented a distributed pipeline using horovod, allowing 4 files to be pro-

cessed and trained in parallel using MPI.

As the data loader streams data, it can be difficult to separate the time spent load-

ing data from the time it takes to train. We therefore ran a separate data loading

experiments to measure the speed of the I/O part.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 17

Training
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

329.83GB 13.74GB 16992 [512,512,17]
72 for A100; 36
for V100

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

8650611 0
Quantile score
(10,50,90%)

24 days of training data; Grid split
into 12 patches.

Inference
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

13.74GB N/A 708 [256,256,17]
72 for A100; 36
for V100

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

8650611 0 N/A
1 day of data; Grid split into 12
patches.

Data
Loading
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

329.83GB N/A 16992 [256,256,17]
72 for A100; 36
for V100

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

N/A 0 N/A
24 days of training data; Grid split
into 12 patches.

Data formats Frameworks (to be) used

NetCDF TensorFlow2

The raw data discussed in this section can be found as tables in appendix 6.1.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 18

4.1.2 JUWELS Booster

In the AP1 , a total of 12 experiments were conducted on Juwels Booster. These 12

experiments were divided into four triplets, each using different configurations:

• Triplet 1 (experiments 1, 2, and 3): 1 Node, 1 GPU, 1 MPI Task, and the SCRATCH

filesystem.

• Triplet 2 (experiments 4, 5, and 6): 1 Node, 2 GPUs, 2 MPI Tasks, and the

SCRATCH filesystem.

• Triplet 3 (experiments 7, 8, and 9): 1 Node, 4 GPUs, 4 MPI Tasks, and the

SCRATCH filesystem.

• Triplet 4 (experiments 10, 11, and 12): 1 Node, 4 GPUs, 4 MPI Tasks, and the

CSCRATCH filesystem.

The inference phase was also tested, with a total of 3 experiments, where the

total runtime and energy consumption were analyzed. Additionally, an analysis was

performed on the runtime, epoch training time, and energy consumption.

4.1.2.1 Training

Considering the aforementioned changes, we are interested in examining how the

runtime has evolved compared to previous runs. To accomplish this, we will be an-

alyzing the total runtime, which is mostly spitted in loading data time and training

runtime. By comparing these results to those of previous runs, we can gain insight

into how the changes made have impacted the performance of the application.

As seen in Figure 1, the experiments of the first trio use a single GPU, and the

performance of these three is quite consistent, hovering around 870 seconds, as

can be seen from the data. These are the longest runs.

By increasing the number of GPUs, a clear improvement in runtime is visible. Ap-

plications 4, 5, and 6, which use 2 GPUs, show a reduction of approximately 200

s compared to the previous case. The best performance is achieved when using 4

GPUs in parallel, resulting in a average runtime of 586.7 seconds.

When using the other file system and maintaining 4 GPUs, the runtime increases,

and on average, these applications take about 717.3 s.

It is important to note that compared to the previous case, where the data load-

ing phase was the predominant component of the total runtime, it is now clearly

reduced.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 19

Figure 1: AP1 JUWELS Booster Runtime: Runtime and relative share for multiple
experiments during the training phase. ap1-jwb-runtime-share

Figure 2: AP1 JUWELS Booster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom).
ap1-jwb-epoch-time

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 20

As the number of GPUs increases (see Figure 2), the training time for one epoch

also scales accordingly. In the first three experiments, the average training time

per epoch is approximately 227.5 ± 3.5 s, while the time to train the first epoch

takes on average 1.22 ± 0.01 s times longer.

The average training time per epoch for the second set of three experiments is

170.8± 7.4 s, with the time to train the first epoch taking on average 1.28± 0.03 s

times longer. In contrast, the third set of three experiments, which utilize 4 GPUs

and achieve the best timing, has an average training time per epoch of 155.9 ±
4.1 s, with the time to train the first epoch taking on average 1.39 ± 0.04 s times

longer. The last set of three experiments, which also utilize 4 GPUs but employ

HPST, has an average training time per epoch of 164.2 ± 3.0 s, with the time to

train the first epoch taking on average 1.48 ± 0.01 s times longer. However, the

first epoch training time for this set is slightly worse, with a mean of 243.7 ± 5.5 s

compared to the previous set.

Figure 3: AP1 JUWELS Booster Energy: Total GPU energy consumption during the
training phase. ap1-jwb-energy

The GPU energy consumption values reported in Figure 3 are specific to a single

GPU and fall within a range of 14 to 18 Wh. This indicates that, overall, there was

a relatively uniform energy consumption across different experimental setups.

4.1.2.2 Inference

Based on data in Figure 4, we can see that the total inference time is significantly

higher than the data loading overhead time. This suggests that the majority of the

runtime is spent on actual inference rather than data loading.

Furthermore, we can see that there is some variation in the total inference time

across the different experiments, with values ranging from 29.17 s to 34.8 s.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 21

Figure 4: AP1 JUWELS Booster Inference Runtime: Runtime and rela-
tive share for multiple experiments during the inference phase.
ap1-jwb-runtime-inf

Figure 5: AP1 JUWELS Booster Energy: Total GPU energy consumption during the
inference phase. ap1-jwb-energy-inf

Regarding the GPU energy consumption, the provided values reported in Figure 5

for the inference experiments indicate relatively low energy usage, ranging from

0.156 Wh to 0.178 Wh for a single GPU.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 22

4.1.3 JUWELS Cluster

In the AP1 , three experiments were conducted on Juwels Cluster, all with the same

configuration of 1 node, 1 GPU, and 1 MPI Task. The following analysis focuses on

runtime, epoch training time, and consumption, with only the training phase being

reported.

4.1.3.1 Training

Figure 6: AP1 JUWELS Cluster Runtime: Runtime and relative share for multiple
experiments ap1-jwc-runtime-share

As show in Figure 6, the total training time ranges from 1518.21 seconds to 1531.19

seconds, while the data loading time ranges from 279.41 seconds to 410.22 sec-

onds. It’s worth noting that the data loading time is a significant portion of the total

runtime, comprising around 18-26% of the total runtime in these experiments.

The relatively small variation in total training time suggests that the training pro-

cess is relatively stable and consistent across these experiments. However, the

differences in data loading time may indicate that there are variations in the data

processing or data access mechanisms used in these experiments.

By looking at Figure 7, we can see that the first epoch training time and the av-

erage training time per epoch are relatively close, with the average time being

slightly lower. This suggests that the model training process is relatively stable,

with consistent performance across epochs.

Looking at the ratio between the first epoch and average epoch training times,

we see that the values are very close to 1, indicating that there is not a significant

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 23

Figure 7: AP1 JUWELS Cluster Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right).
ap1-jwc-epoch-time

difference between the two. This further supports the notion that the model training

process is stable and consistent.

Figure 8: AP1 JUWELS Cluster Energy: Total GPU energy consumption during the
training phase. ap1-jwc-energy

The GPU energy consumption related to the training phase (see Figure 8) varies

across the different runs, but the variation between experiments is small. The val-

ues reported are 33.15 Wh, 29.48 Wh, and 28.15 Wh for the three runs, respec-

tively, and these values appear to be relatively homogeneous.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 24

4.1.4 E4 Intel System

On the E4 Intel system, six experiments were performed, all with the same con-

figuration except for the filesystem, which was either NFS or NVMe. The following

analysis focuses on runtime and energy consumption for these two different filesys-

tems. Additionally, three experiments were performed to gather information on the

inference part of the pipeline.

4.1.4.1 Training

Figure 9: AP1 E4 Intel System Runtime: Runtime and relative share for multiple
experiments during the training phase. ap1-e4intel-runtime-share

we can see that there are three experiments conducted on two different filesys-

tems, NFS and NVMe. For the NFS filesystem, the total runtime values are reported

as 2095.96 s, 1946.28 s, and 2070.76 s for experiments 0, 1, and 2, respectively.

The corresponding loading data times are relatively similar, with values ranging

from 1956.94 s to 1967.15 s. On the other hand, for the NVMe filesystem, the total

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 25

runtime values are reported as 1610.62 s, 1280.85 s, and 1355.70 s for experi-

ments 0, 1, and 2, respectively, with loading data times around 400 s. While for the

NFS case we see that half of the total runtime is taken by the data loading, which

was a bottleneck in the previous deliverable, we obtain a very good improvement

by using a more performant filesystem such as NVMe. In fact, the data loading is

strongly reduced, passing from 1960 s to 400 s, which represents a reduction of

almost 80% in data loading time.

Since only one epoch was used for training on the Intel system, it is not possible to

compare the first and average epoch training times.

Figure 10: AP1 E4 Intel System Energy: Total energy consumption (up); peak and
average node power draw (right) ap1-e4intel-energy

Using the NVMe filesystem not only improves the loading data time, but it also re-

duces the total runtime and energy consumption. In fact, as shown in Figure 10 the

mean energy consumption for the NVMe experiments is 231.17± 26.69Wh, which

results lower than the one for the NFS experiments, that is 293.33 ± 15.37Wh.

In Figure 11, we can observe the action values for the Intel system. The results

indicate that the applications running on the NVMe filesystem have better overall

performance compared to those running on NFS, as they have lower action values.

On average, the action value for NFS is 2154.6 ± 194.5MJs, while for NVMe it is

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 26

Figure 11: AP1 E4 Intel System Action: Comparison of action values for appli-
cations using different file systems during training: NVMe and NFS.
ap1-e4intel-action

1189.2 ± 287.6MJs.

The experiment with the best performance on NVMe is experiment 1, which has the

lowest action value of 970.18 MJs. On the other hand, experiment 0 on NFS has the

highest action value of 2317.90 MJs, which is more than double the action value of

experiment 1 on NVMe.

4.1.4.2 Inference

The total inference time is relatively consistent across the different runs for both

the NFS and NVMe filesystems, with values ranging from 34.24 s to 34.89 s.

However, we can see that the data loading overhead is significantly higher for the

NFS filesystem, with values ranging from 80.33 s to 91.8 s, compared to the NVMe

filesystem, with values ranging from 22.46 s to 22.9 s. This suggests that the data

loading process may be a bottleneck when using the NFS filesystem, which could

impact the overall performance of the inference process.

The energy consumption during inference varies across the different runs and

filesystems. The values reported are 12.28 Wh, 11.32 Wh, and 12.89 Wh for the

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 27

Figure 12: AP1 E4 Intel System Inference Runtime: Runtime and relative share for
multiple experiments ap1-e4i-runtime-inf

NFS filesystem, and 3.33 Wh, 3.37 Wh, and 3.25 Wh for the NVMe filesystem, re-

spectively. It is interesting to note that the energy consumption values for the NVMe

filesystem are consistently lower than those for the NFS filesystem. This suggests

that using a more performant filesystem like NVMe not only reduces the data load-

ing overhead and total inference time but also saves energy.

As reported in Figure 14, we can see that the experiments using NVMe have a

much lower action value compared to those using NFS, indicating better overall

performance. On average, NFS reports an action of 5.32 ± 0.40MJs, while NVMe

0.68 ± 0.01MJs.

Experiment 2 on NVMe has the lowest action value of 0.67 MJs, while experiment

5 on NFS has the highest action value of 5.89 MJs, which is almost 9 times higher

than the action value of experiment 2 on NVMe.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 28

Figure 13: AP1 E4 Intel System Energy: Total node energy consumption.
ap1-e4i-energy-inf

Figure 14: AP1 E4 Intel System Action: Comparison of action values for appli-
cations using different file systems during inference: NVMe and NFS.
ap1-e4i-inf-action

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 29

4.1.5 E4 AMD System

On the E4 AMD system, six experiments were performed with the same configura-

tion as the Juwels Cluster, except for the filesystem, which was either NFS or NVMe.

The following analysis focuses on runtime, epoch training time, and consumption

for these two different filesystems. Additionally, three tests were performed to eval-

uate the inference part of the pipeline.

4.1.5.1 Training

Figure 15: AP1 E4 AMD System Runtime: Runtime and relative share for multiple
experiments ap1-e4amd-runtime-share

Based on Figure 15, we can see that the data loading time and training runtime

during the training phase are relatively similar across the three experiments, with

values ranging from 1914.86 s to 1920.69 s for data loading and from 2107.48 s to

2139.59 s for training runtime. It seems that the loading data time is a bottleneck

in the training phase as it takes up a significant portion of the total runtime. In order

to improve performance, it may be worth exploring the use of a more performant

filesystem, similar to the previous case where the NVMe filesystem provided better

data loading times.

Since only one epoch was used for training on the AMD system, it is not possible to

compare the first and average epoch training times.

As shown in Figure 16 the energy consumption during the training phase also ap-

pears to be relatively similar, with values ranging from 359.11 Wh to 366.51 Wh

across the three experiments.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 30

Figure 16: AP1 E4 AMD System Energy: Total node energy consumption during the
training phase ap1-e4amd-energy

Figure 17: AP1 E4 AMD System Action: Action values (in MJs) for three ap-
plications executed on the AMD system during the training phase.
ap1-e4amd-action

Looking at Figure 17, we see that the action values are similar, with a difference of

only around 1% between the highest and lowest values. Experiment 0 reports the

lowest action value of 2772.18MJs, while experiment 2 has the highest action value

of 2818.06MJs. The average action value for NFS is 2788.27MJs with a standard

deviation of 22.11MJs.

Compared to the results of the NVMe filesystem, the action values for NFS are

higher, indicating lower overall performance.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 31

4.1.5.2 Inference

Figure 18: AP1 E4 AMD System Inference Runtime: Runtime and relative share for
multiple experiments ap1-e4a-runtime-inf

The total inference time for the three runs varies between 20.01 s and 20.3 s, with a

data loading overhead ranging from 76.04 s to 91.06 s. Based on the provided data,

it may be worthwhile to further investigate the use of more performant filesystems

to improve the data loading process during inference. This could potentially lead to

reduced data loading overhead and improved total inference time.

Figure 19: AP1 E4 AMD System Energy: Node energy consumption during the in-
ference phase ap1-e4a-energy-inf

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 32

Regarding energy consumption, the values reported are almost constant across

the three runs, with an average value of 10.75 ± 0.88Wh. This suggests that the

energy consumption for the inference phase is relatively stable and consistent.

Figure 20: AP1 E4 AMD System Action: Action values (in MJs) for three ap-
plications executed on the AMD system during the inference phase
ap1-e4a-inf-action

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 33

4.1.6 Results

In the context of AP1 , various hardware configurations were tested, and the data

reported in this second benchmarking phase shows an improvement in the time

spent by the runtime in data loading compared to the previous deliverable. While

the previous deliverable had a data loading time of around 60% and 73%, this

second run showed that, with the use of better performing filesystems such as

NVMe, GPFS or HPST, the time spent in data loading ranges between 18% and 31%

of the runtime. However, when using default filesystems like NFS in E4 systems,

the data loading time covers between 48% and 50% of the runtime. These results

indicate that not only optimizations made in the data loader, but also the filesystem

used plays a crucial role in the data loading process.

GPU consumption for JSC systems and node consumption for E4 systems were also

recorded. It is worth noting that the consumption refers to the average consump-

tion of the individual GPU, and the V100 GPUs in Juwels Cluster and Booster not

only perform less well but also report higher consumption than the A100 GPUs.

For E4 systems, the energy consumption of the entire node was quantified, pro-

viding a more realistic view of the consumption. The results show that the In-

tel system outperforms the AMD system, reporting an average consumption of

293.33 ± 15.37Wh and 363.51 ± 3.90Wh respectively, for the same filesystem.

Taking into consideration the action metric for the E4 systems during the training

phase with the same NFS filesystem, the Intel system reported an average action

value of 2154.5 ± 194.5MJs, while the AMD system reported an average action

value of 2788.3 ± 25.8MJs. Based on these values, we can conclude that the Intel

system outperforms the AMD system in terms of average action.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 34

4.2 AP 2

4.2.1 Notes

Training
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

47.2MB 11.8MB 190k (128100, 768) 32

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

184423682 0
cross entropy
loss

Finetuning pre-trained model with
small benchmark dataset

Inference
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

11.8MB - 50k (128100, 768) 32

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

0 184423682 -
Finetuning pre-trained model with
small benchmark dataset

Data formats Frameworks (to be) used

NetCDF Pytorch 1.13

The task of Application 2 is to classify Tweets as "raining" or "not raining". Our cur-

rent solution is based on a deep transformer based neural network that is trained

on a large corpus. We focus on finetuning the model to adopt it to our specific do-

main (see Deliverable D1.3 for more details). A single epoch suffices to finetune

our model. The model can be trained on multiple GPUs in parallel. Here, we vary

the number of used GPUs to analyze the efficiency of parallelization and its effi-

ciency on different systems. To allow for more iterations, we only use a quarter of

our full training set. Note, this application was not able to participate in the first

round of benchmarking (see Deliverable 3.4). Comparisons to a previous iteration

of the model are therefore not possible.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 35

First, we outline the definitions for our measured timescales as used throughout the

analysis. Our "Total training time" includes model setup, actual training time and

quick evaluation of model performance. Our dataset is small enough to be loaded

into RAM memory. We exclude time required to load the dataset into RAM from

"Total training time". We train for a single epoch. The time required for the actual

training is reported as "Training time for epoch". During this training step, the data

has to be provided to the model, the total time required for this process defines our

"Total IO time".

Turning to evaluation, "Total IO time" measures data loading from disk only. "To-

tal inference time" encompasses the time required to load the model and model

inference. The "Total runtime" is then the sum "Total IO time" + "Total inference

time".

Regarding the power consumption, different measurements were taken depending

on the system. In the case of JSC, we provide power consumption of the GPU only,

while in the case of the E4 machines, we report power consumption of the whole

node.

Overall, training time is dominated by actual training tasks (gradient computation,

backpropagation, etc.). Additional processes like model setup, IO, etc. make up

less than < 10% of total training time. Therefore, most signifcant speed ups are

expected from more efficient training algorithms and/or parallelization of model

training.

Using multiple GPUs for training reduces training times significantly. However, scal-

ing between execution time vs numbers of GPUs is less than ideal. For example,

using 2 (4) GPUs on JUWELS Booster leads to speed ups of factors 1.6x (2.5x).

More in-depth analysis is required to find bottlenecks and resolve them.

Looking at GPU energy consumption for training on JUWELS Booster and JUWELS

Cluster, we see comparable total energy consumption when using a single GPU.

Note, that a minimum number of 4x GPUs are available per node. Therefore, the

additional three GPUs are then in their idle state, which is included in the total

consumption. Comparing the consumption between JUWELS Booster and JUWELS

Cluster when using more than a single GPU, JUWELs Booster is noticibly more ef-

ficient. This may due to the different GPU types used. JUWELS Booster consists

of NVIDIA A100 GPUs vs JUWELS Cluster’s NVIDIA V100 GPUs. JUWELS Booster is

10− 30% faster with increasing speeds for larger numbers of GPUs used. While av-

erage power for a single GPU of JUWELS Booster is higher than for JUWELS Cluster

(∼ −10%), using multiple GPUs leads to lower average powers for JUWELS Booster

compared to JUWELS Cluster (∼ +10%). These effects compound to comparable

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 36

total power consumption 21Wh for both systems using a single GPU and around

30% less power consumed when using multiple GPUs for JUWELS Booster com-

pared JUWELS Cluster. Interestingly, IO takes ∼ 20% more time on JUWELS Booster

compared to JUWELS Cluster. However, this has little effect on the total training

times as IO makes up only 3 − 10% of the total training time.

Turning to power measurements of E4 systems. We find that their Intel based sys-

tem (including an NVIDIAs A100) consumes slightly less power (∼ 5%) compared

to the AMD system. However, the significantly short run time on the Intel system

(0.76x) compounds to a significantly less power draw compared to the AMD system

(0.74x).

Both E4’s Intel setup and JUWELS Booster (1x GPU) are based on NVIDIA A100 mod-

els. Performance numbers are comparable. Therefore, difference in system setup

and hardware configuration besides GPU’s appear to have a negligible effect on

training speeds.

The E4 Intel system equiped with an NVIDIA A100 model is significantly faster than

the E4 AMD setup using an AMD Instinct MI100. The former takes on average 0.76

of the training time, 0.76 of the IO time and consumes only 0.72 of the energy of

the former. Reasons for this should be investigated in the future.

Memory consumption for CPUs and GPU(s) are comparable between all tested sys-

tems (JUWELS Booster/Cluster, E4 Intel/AMD) at ∼ 4GB and ∼ 11GB, respectively.

This makes training feasible on consumer-grade systems with a highend graphics

card model. For evaluation, even just CPUs are sufficient for our dataset.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 37

4.2.2 JUWELS Booster

On Juwels Booster, 10 experiments were performed for training. The number of

nodes was fixed at 1, while the number of GPUs varied across the experiments.

The first three runs used 1 GPU, the next three used 2 GPUs, and the last four used

4 GPUs.

For inference, three experiments were performed with fixed configurations of 1

node, 1 GPU, and 1 MPI task.

4.2.2.1 Training

Figure 21: AP2 JUWELS Booster Runtime: Runtime and relative share for multiple
experiments in the training phase. ap2-jwb-runtime-share

Looking at Figure 21, we can see that the total training time decreases as the num-

ber of GPUs increases. For example, with 1 GPU the training times were between

930 and 1027 seconds, while with 4 GPUs the training times ranged from 402 to

429 seconds.

On the other hand, the rest time seems to increase slightly as the number of GPUs

increases. The rest time ranges from 36 to 40 seconds when using 1 or 2 GPUs,

while with 4 GPUs the rest time ranges from 40 to 42 seconds.

By looking at Figure 22, as we increase the number of GPUs used in the training

process, the mean energy consumption per GPU decreases. Specifically, with only

one GPU, the mean energy consumption is around 22.2 ± 2.9Wh, while with four

GPUs, the mean energy consumption drops to around 14.2 ± 0.4Wh.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 38

Figure 22: AP2 JUWELS Booster Energy: Total GPU energy consumption in the train-
ing phase ap2-jwb-energy

4.2.2.2 Inference

Considering the inference phase, from Figure 23 seems that the inference time is

relatively consistent across the three runs, with the total inference time ranging

from approximately 18.99 seconds to 20.35 seconds. The data loading overhead

also seems consistent, with values ranging from 5.75 seconds to 7.50 seconds.

Figure 23: AP2 JUWELS Booster Inference Runtime: Runtime and relative share for
multiple experiments in the inference phase. ap2-jwb-runtime-inf

Looking at the GPU energy consumption values during the inference phase (Fig-

ure 24), we can see that they are relatively low, with an average consumption of

around 0.41 ± 0.02Wh per run. This is not surprising, as the inference phase is

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 39

generally less computationally intensive compared to the training phase, and thus

requires less energy.

Figure 24: AP2 JUWELS Booster Energy: Total GPU energy consumption in the in-
ference phase ap2-jwb-energy-inf

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 40

4.2.3 JUWELS Cluster

On Juwels Cluster, nine experiments were performed for training. The number of

nodes and MPI tasks was fixed at 1, while the number of GPUs varied across the

experiments. The first three runs used 1 GPU, the next three used 2 GPUs, and the

last three used 4 GPUs.

For inference, the same number of experiments were performed with the same

configurations as in the training case, including the fixed number of nodes, MPI

tasks, and GPU configurations.

4.2.3.1 Training

Figure 25: AP2 JUWELS Cluster Runtime: Runtime and relative share for multiple
experiments in the training phase ap2-jwc-runtime-share

As show in Figure 25, by increasing the number of GPUs, the total training time

decreases. Specifically, the total training time with 1 GPU ranges from 1.095,736

to 1.137,338 seconds, with an average of 1123.96±19.44 s. The total training time

with 2 GPUs ranges from 794.62 to 861.28 seconds, with an average of 838.97 ±
32.86 s. Finally, the total training time with 4 GPUs ranges from 519,437 to 598,011

seconds, with an average of 551.99 ± 35.09 seconds.

Additionally, we can see that the rest time (time spent outside of training) generally

decreases as the number of GPUs increases, although there are some exceptions.

The rest time with 1 GPU ranges from 33.51 to 39.76 seconds, with an average

of 35.93 ± 2.76 seconds. The rest time with 2 GPUs ranges from 38.01 to 44.98

seconds, with an average of 42.01±3.66 seconds. Finally, the rest time with 4 GPUs

ranges from 44.50 to 50.78 seconds, with an average of 47.02 ± 3.13 seconds.

Overall, these results suggest that using more GPUs can significantly reduce the

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 41

total training time, but may not always result in a proportionate reduction in rest

time.

Figure 26: AP2 JUWELS Cluster Energy: Total GPU energy consumption in the train-
ing phase. ap2-jwc-energy

Looking at Figure 26, we can see that the value of each GPU vary between 18.36

and 25.45 Wh. Based on the GPU energy consumption data, it seems that the

energy consumption is relatively consistent across different configurations. In the

1 GPU configuration, the energy consumption ranges from 20.88 to 23.07 Wh with

an average of 22.22±1.00Wh. In the 2 GPU configuration, the energy consumption

averages 23.30 ± 1.32Wh. Finally, in the 4 GPU configuration, the average power

consumption is 20.28 Wh.

4.2.3.2 Inference

In Figure 27, the data loading overhead appears to be consistent across all exper-

iments and does not seem to be affected by the number of GPUs used. However,

the total inference runtime displays a highly variable behavior, with a general trend

of increasing mean inference time as the number of GPUs increases. Specifically,

the mean inference time increases from 18.63± 5.17 seconds in the 1-GPU config-

uration to 24.32 ± 1.74 seconds in the 4-GPU configuration.

Figure 28 shows that the energy consumption increases with the number of GPUs

used for inference, with the highest consumption being in the 4 GPU configuration.

However, it shows also that the lowest consumption per GPU being in the 2 GPU

configuration.

We can also compare the energy consumption with the data loading overhead and

total inference time. It appears that there is not a clear correlation between energy

consumption and data loading overhead or total inference time.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 42

Figure 27: AP2 JUWELS Cluster Inference Runtime: Runtime and relative share for
multiple experiments in the inference phase ap2-jwc-runtime-inf

Figure 28: AP2 JUWELS Cluster Energy: Total GPU energy consumption in the infer-
ence phase. ap2-jwc-energy-inf

4.2.4 E4 Intel System

In AP2 , three experiments were conducted to evaluate the performance of training

on the E4 Intel System. These three runs had the same configuration, using 1 node,

1 GPU, and 1 MPI task. The same configuration and number of tests were used for

inference.

In the following, we report an analysis on runtime, epoch training time, and con-

sumptions.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 43

4.2.4.1 Training

The total runtime of the training phase is reported in Figure 29. The total training

time for the three runs was 1002.64 seconds, 1139.48 seconds, and 1019.96 sec-

onds. The average total training time was 1054.36 ± 68.11 s, while the average

rest time amounts to 26.00 ± 4.41 s

These results show that the total training time varies among the three runs, with

a standard deviation of around 6.5% of the average value. The rest time, on the

other hand, shows less variability.

Figure 29: AP2 E4 Intel System Inference Runtime: Runtime and relative share for
multiple experiments in the training phase. ap2-e4i-runtime-run

In Figure 30, the energy consumption values for the entire node during the training

process is reported.

For the three training runs, the energy consumption values are 153.01 Wh, 169.96

Wh, and 160.50 Wh, respectively, and so the energy consumption values appear to

be relatively consistent, with the standard deviation likely to be low. The average

energy consumption amounts to 161.16 ± 8.65Wh.

After analyzing the action values for the three experiments in Figure 31, it can be

observed that there is some variability among them. Experiment 1 has the high-

est action value of 697.19 MJs, while Experiment 0 has the lowest action value

of 552.29 MJs, and Experiment 2 has an action value of 589.33 MJs, which is in

between the other two. The average action value across the three experiments is

612.94 ± 75.28MJs.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 44

Figure 30: AP2 E4 Intel System Energy: Total node energy consumption in the
training phase ap2-e4i-energy

Figure 31: AP2 E4 Intel System Action: Action values (in MJs) for three ap-
plications executed on the Intel system during the training phase.
ap2-e4i-action

4.2.4.2 Inference

As show in Figure 32, the data loading overhead is relatively constant across all

three experiments, with values ranging from 3.71 to 3.98 seconds. On the other

hand, the total inference time varies from 11.03 to 12.70 seconds, with a mean

inference time 11.60 ± 0.80 s. This indicates that the inference time is relatively

stable across the experiments.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 45

Figure 32: AP2 E4 Intel System Inference Runtime: Runtime and relative share for
multiple experiments in the inference phase. ap2-e4i-runtime-inf

Looking at the energy consumption measurements, shown in Figure 33, we can see

that they are relatively close to each other, ranging from 2.09 to 2.16 Wh, with a

mean energy consumption of 2.12 ± 0.04Wh. This suggests that also the energy

consumption is consistent across the experiments.

Figure 33: AP2 E4 Intel System Energy: Total node energy consumption in the in-
ference phase. ap2-e4i-energy-inf

By looking at the action represented in Figure 34, it appears that all three experi-

ments have relatively similar performance, with Experiment 0 having the highest

value of 0.13 MJs and Experiment 1 having the lowest value of 0.11 MJs. The differ-

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 46

ence in action values between the experiments is relatively small, with a range of

only 0.02 MJs.

Figure 34: AP2 E4 Intel System Action: Action values (in MJs) for three ap-
plications executed on the Intel system during the inference phase.
ap2-e4i-action-inf

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 47

4.2.5 E4 AMD System

In the AP2 , three experiments were conducted on the E4 AMD System. These three

runs had the same configuration, using 1 node, 1 GPU, and 1 MPI task. The same

configuration and number of tests were used for inference.

4.2.5.1 Training

The total training time for this system results to be longer than in the Intel case,

with values ranging from 1364.05 to 1399.14 s, while the rest time values range

from 30.63 to 30.76 seconds. As shown in Figure 35, these three experiments looks

consistent and homogeneus between each other, both in the total training time

and in the rest time.

Figure 35: AP2 E4 AMD System Runtime: Runtime and relative share for multiple
experiments in the training phase. ap2-e4amd-runtime-share

Also in the energy consumption case, see Figure 36, the experiment shows very

little variation, with values ranging from 214.43 to 217.85 Wh.

The action metric was used to evaluate the performance of the AMD cluster, as

shown in Figure 37. The results indicate that all three experiments have similar

action values, with Experiment 0 recording the lowest value of 1076.6 MJs, and Ex-

periment 2 recording the highest value of 1092.71 MJs. The range of action values

between the experiments is relatively small, with only a 15.04 MJs difference.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 48

Figure 36: AP2 E4 AMD System Energy: Total node energy consumption in the
training phase. ap2-e4amd-energy

Figure 37: AP2 E4 AMD System Action: Action values (in MJs) for three ap-
plications executed on the AMD system during the training phase.
ap2-e4amd-action

4.2.5.2 Inference

For what concerns the inference (see Figure 38), by analyzing the total runtime we

have seen that the average data loading overhead covers 3.94± 0.52 s of the total

runtime, while the average inference time takes 18.23 ± 5.64 s. The data loading

overhead appears consistent across all runs, while the total inference time shows

significant variation, with experiments 2 and 3 having similar times (15.30±0.01 s)

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 49

and experiment 1 taking 61% more time (24.43 s). These findings suggest that

the data loading overhead is relatively stable across experiments, while the total

inference time is subject to greater variation.

Figure 38: AP2 E4 AMD System Inference Runtime: Runtime and relative share for
multiple experiments in the inference phase ap2-e4a-runtime-inf

As shown in Figure 39, the energy behavior is somewhat consistent with the infer-

ence time behavior. This suggests that longer inference times require more energy

consumption. Specifically, the first experiment consumed 3.45 Wh of energy, while

the other two experiments had lower energy consumption of 2.41 Wh and 2.45 Wh,

respectively.

By looking at Figure 40, we see that experiment 0 has the highest action value of

0.38 MJs, while experiment 1 has the lowest action value of 0.16 MJs. Experiment

2 has an action value of 0.17 MJs, which is very close to the value of experiment

1. Since the action values are very small, we can conclude that the system has

performed well and efficiently for all three experiments. However, experiments 1

and 2 have lower action values, indicating better overall performance and energy

efficiency.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 50

Figure 39: AP2 E4 AMD System Energy: Total node energy consumption in the in-
ference phase ap2-e4a-energy-inf

Figure 40: AP2 E4 AMD System Action: Action values (in MJs) for three ap-
plications executed on the AMD system during the inference phase.
ap2-e4a-action-inf

4.2.6 Results

In the JSC systems, multiple experiments were conducted with different numbers of

GPUs on both a booster and a cluster. The findings indicate that there is a notable

enhancement in runtime with the use of more GPUs. Specifically, compared to the

single-GPU configuration, employing four GPUs led to a reduction in runtime from

around 1019.6 ± 49.9 to 453.9 ± 12.1 s (Booster case) and from 1159.2 ± 26.1 to

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 51

550.0 ± 42.1 s (Cluster case), resulting in an average of 2.1 times faster perfor-

mance than the case with only one GPU.

In the E4 machines, single-GPU experiments were performed, and the results con-

sistently showed that the Intel system outperformed the AMD system in both train-

ing and inference.

The measurements displayed relatively consistent values for both individual GPUs

and the entire node in terms of power consumption. During the training process,

the JSC system showed an average consumption per single GPU of 17.24±3.83Wh

and 22.05±2.30Wh for Juwels Booster and Cluster, respectively. On the other hand,

the average power consumption of the entire node was 157.17 ± 8.59Wh for the

Intel system and 212.84 ± 1.77Wh for the AMD system in the case of E4 systems.

In terms of the action metric, which combines both runtime and consumption, the

Intel system had a lower action value than the AMD system, with values of 612.9±
75.3and 1085.0 ± 8.1MJs, respectively, indicating that the Intel system was more

performant.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 52

4.3 AP 3

4.3.1 Notes

Training
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

60GB 4.2GB 2984960
(17), (137, 27), (138, 2),
(138, 1)

512

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

261515 0
MSE (multiple
output vectors)

Model not trained to convergence
for cost reasons (only 5 epochs), 50
epochs required

Data formats Frameworks (to be) used

NetCDF TensorFlow 2.X

The dataset has remained the same since the previous benchmarking effort. De-

velopments have focusssed on improving the model architecture. We have settled

on a predominantly RNN architecture, specifically using LSTM blocks to propagate

information in the vertical dimension. This has a very small footprint in number of

trainable parameters, O(105), but surpasses the final metric scores of the previ-

ously explored architecture, which featured convolutional and self-attention layers.

Note, with the chosen batch size for this benchmarking effort only a small fraction

of the GPU memory is used on most system. This batch size was chosen to optimise

final metrics. Results in the below highlight that further effort should be made to

explore large batch sizes without degrading final training metrics.

Deliverables D1-3 and D3-4 highlighted that loading data from disk was a bottle-

neck on some of the machines. In this deliverable we have added a data loading

only test, where no training is done, to better understand the limitting effect of

data loading. As with the previous deliverable we run experiments both using CPU

memory caching of the dataset and disabling it. Whilst this dataset can be cached

in memory, the full dataset is O(200Gb) and therefore would not necessarily fit

into CPU memory and must be streamed. A cache-free solution is therefore highly

desirable.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 53

For AP3 experiments were performed with different flags supplied to the applica-

tion. The configurations are:

• None: Default version without special flags

• --nocache: Avoid using TensorFlow dataset cache

• --dl_test: Iterate through the training dataset without training the model, to

test data-loading capabilities.

• CSCRATCH: Using “fast” disk on either Julich or E4 hardware, as opposed to the

default location.

Raw data for graphs and discussions of this section is listed in appendix 6.3.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 54

4.3.2 JUWELS Booster

In the Juwels Booster, 12 experiments have been conducted, divided into four

triplets with different flags and configurations. The number of GPUs and MPI tasks

used in these experiments was set to 1. The configuration for each triplet is as

follows:

• Triplet 1: –nocache flag and SCRATCH filesystem.

• Triplet 2: no flag and SCRATCH filesystem.

• Triplet 3: –dl_test –nocache flag and SCRATCH filesystem.

• Triplet 4: –nocache flag and CSCRATCH fast disk.

The runtime of the inference phase has also been reported, with three experiments

performed using this system.

4.3.2.1 Training

Figure 41 depicts the total training time and rest time for different runs of the AP3

with different flags and disks.

For the runs with the nocache flag, the average total runtime is 1614.81 ± 0.02 s,

while the rest time accounts for about 0.2% of the total runtime. This set of runs is

the longest among the experiments using the SCRATCH disk, as this version avoids

using TF dataset cache.

Moving to the Default version, we observe an average total runtime of 1155.16 ±
34.69 , which shows a decrease of approximately 28.4% with respect to the previ-

ous case.

The runs with the –dl_test flag test the data loading capabilities and also use the

–nocache flag. The average runtime is 1009.71 ± 0.01 s, which represents approx-

imately 62.5% of the training runtime in the case with the –nocache flag.

The last set of runs uses the CSCRATCH fast disk with the –nocache flag. These runs

take more time with respect to the SCRATCH disk, with an average runtime value

of 1916.34± 0.16 s, representing an increase of approximately 18.7% with respect

to the runs using the –nocache flag and the SCRATCH disk.

Figure 42 shows the comparison between the first epoch training time and the

average training time per epoch for the same runs as described before. It is notable

that the training times for the first epoch are very similar to the times for the later

epochs in the experiments with the –nocache flag, namely triplets 1, 3, and 4. These

triplets exhibit a value very close to 1 in the plot, which depicts the ratio between

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 55

Figure 41: AP3 JUWELS Booster Runtime: Runtime for multiple experiments during
the training phase. ap3-jwb-runtime-share

the two times. On the other hand, the runs without the flag show a considerable

difference between the first epoch and the average epoch training time, which

averages to 143.90± 3.13 s. In the runs without the –nocache flag, the TensorFlow

dataset cache is used, which can lead to some overhead during the first epoch.

The plot representing GPU power consumption (Figure 43) follows the same trend

as the training runtime plot, indicating a direct proportionality between the two

quantities. For the runs using the –nocache flag, the average GPU power consump-

tion is around 28.47 ± 1.05watts, with a slight variation among the different runs.

However, this value decreases significantly in the case without the flag, reaching

an average consumption of 21.47 ± 0.86watts, with a decrease of approximately.

This can be explained by the fact that using the cache implies a higher workload

for the GPU, hence a higher power consumption due to the overhead. Regarding

the data loading test, the average consumption is around 16.54 ± 0.27watts, with

a small variation among the different runs. Finally, for the three runs using the

CSCRATCH disk, the average GPU power consumption is around 36.58±0.39watts,

which is higher than the consumption observed in the previous cases.

4.3.2.2 Inference

For the inference test, three runs were performed without any flags.

A show in Figure 44, the data loading overhead time for the three runs ranges

from 1.04 to 1.13 seconds, with an average value of around 1.1 seconds. The total

inference time for the three runs is very consistent, ranging from 42.25 to 42.27

seconds, with a very small variation of only 0.02 seconds. The rest time for the runs

is also very similar, ranging from 1.21 to 1.22 seconds. This rest time represents

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 56

Figure 42: AP3 JUWELS Booster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom).
ap3-jwb-epoch-time

Figure 43: AP3 JUWELS Booster Energy: Total GPU energy consumption during the
training phase. ap3-jwb-energy

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 57

the time between the end of the inference process and the end of the total runtime.

Overall, we can conclude that the inference test results are very consistent and

show very little variation between the three runs. The data loading overhead is

also relatively small, indicating that the system is capable of loading data efficiently

during inference.

Figure 44: AP3 JUWELS Booster Inference Runtime: Runtime and rela-
tive share for multiple experiments during the inference phase
ap3-jwb-inf-runtime-share

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 58

4.3.3 JUWELS Cluster

In the Juwels Cluster, 9 experiments have been conducted, divided into three triplets

with different flags and configurations. The number of GPUs and MPI tasks used in

these experiments was set to 1. The configuration for each triplet is as follows:

• Triplet 1: –nocache flag and SCRATCH filesystem.

• Triplet 2: no flag and SCRATCH filesystem.

• Triplet 3: –dl_test –nocache flag and SCRATCH filesystem.

The runtime of the inference phase has also been reported, with three experiments

performed using this system.

4.3.3.1 Runtime

The training and rest times for different runs of the AP3 using different flags but the

same disk (SCRATCH) are shown in Figure Figure 45. It is worth noting that the rest

times cover a very small fraction of the total runtime and are therefore negligible.

For the runs with the –nocache flag, the average total runtime is 2215.66 ± 0.08 s,

while the rest time accounts for about 0.1% of the total runtime. This set of runs is

the longest on Juwels Cluster, as this version avoids using TF dataset cache.

Moving to the Default version, we observe an average total runtime of 1495.64±0.08

s, which shows a decrease of approximately 32.5% with respect to the previous

case.

The runs with the –dl_test flag, which test the data loading capabilities, exhibit

a behavior similar to the Default case. The average runtime is 1529.37 ± 59.28

s, which represents approximately 69.0% of the training runtime in the case with

the –nocache flag. The rest time in this case is 0.16% of the total runtime and is

therefore negligible.

Looking at Figure 46, it is apparent that using the –nocache flag results in longer

average training times per epoch compared to the default case. The average train-

ing time per epoch for the –nocache flag is higher than the default case, indicating

longer training times per epoch. Furthermore, the first epoch training time for the

–nocache flag is also higher than the following epochs, with a ratio ranging from

1.065 to 1.071. Overall, the use of the –nocache flag results in longer training times

per epoch compared to the Default flag.

For the None configuration, the first epoch training time (mean 429.6±4.2 s) is

significantly higher than the following epochs (mean 280.3±0.5 s), with a ratio

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 59

Figure 45: AP3 JUWELS Cluster Runtime: Runtime for multiple experiments during
the training phase ap3-jwc-runtime-share

ranging from 1.519 to 1.542. This suggests that the first epoch is affected by some

initial overhead.

In contrast, the average training time per epoch of the –dl_test –nocache config-

uration amounts to 279.33±9.70 s, which falls in the same range as the None

configuration. The first epoch training time for this configuration is on average

307.33±37.90 s, and the run 0 shows a first epoch training time (351 s)which is

significantly higher than the following epochs, with an average training time per

epoch of 283.8 s.

It is worth noting that both the first and average epoch training time show an

increase compared to JUWELS Booster, as seen in Figure Figure 46. This is in line

with the increase in total training time.

On the JUWELS Cluster, the default configuration of the benchmark consumes

241.0 ± 3.5W h of energy, as shown in Figure 47. However, when using the –

nocache flag, the energy consumption increases to 347.1 ± 3.6W h. On the other

hand, when using the –dl_test –nocache flag, the average GPU energy consumption

is 194.1 ± 10.1W h, which represents the 55.9% of the energy consumed by the

–nocache configuration.

4.3.3.2 Inference runtime

Based on Figure 48, we can see that the total runtime of the inference test ranges

from 44.24 seconds to 44.63 seconds, while the data loading overhead ranges from

1.01 seconds to 1.44 seconds.

In terms of total inference time, the experiments have similar results, with the

time ranging from 42.04 seconds to 42.05 seconds. The rest time ranges from 1.15

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 60

Figure 46: AP3 JUWELS Cluster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom)
ap3-jwc-epoch-time

Figure 47: AP3 JUWELS Cluster Energy: Total GPU energy consumption
ap3-jwc-energy

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 61

seconds to 1.18 seconds, with the first experiment having the shortest rest time.

When comparing these results to Juwels Booster case, we can see that the total

runtime and data loading overhead times are very similar in this set of experiments,

as the total inference and rest times.

Overall, these results suggest that the performance of the inference test is consis-

tent across multiple experiments, with similar total inference times and rest times

observed.

Figure 48: AP3 JUWELS Cluster Inference Runtime: Runtime and rela-
tive share for multiple experiments and two configurations
ap3-jwc-inf-runtime-share

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 62

4.3.4 E4 Intel System

In the Intel System, 12 experiments have been conducted on Juwels Booster, di-

vided into four triplets with different flags and configurations. The number of GPUs

and MPI tasks used in these experiments was set to 1. The configuration for each

triplet is as follows:

• Triplet 1: –nocache flag and the default (NFS) filesystem.

• Triplet 2: no flag and the default (NFS) filesystem.

• Triplet 3: –dl_test –nocache flag and the default (NFS) filesystem.

• Triplet 4: –nocache flag and NVMe filesystem.

The runtime of the inference phase has also been reported, with three experiments

performed using this system.

4.3.4.1 Training

As showcased in Figure 49, better training performance than JUWELS Booster can

be seen on the E4 Intel System, in particular we can see that: the –nocache and

NVMe –nocache configurations have similar runtimes, while the –dl_test –nocache

configuration has a significantly lower runtime. None configuration has a runtime

that is longer than the others.

For the –nocache flag experiments, the average total runtime is 793.93 ± 8.10 s,

with an average total training time of 792.12 ± 7.18 s and a rest time of 1.81 ±
0.10 s, which is negligible compared to the total runtime. On the other hand, the

tests with the –dl_test flag –nocache, which involve data loading, have an average

total runtime of 603.39 ± 12.16 s, which accounts for approximately 75% of the

total training time of the –nocache case.

The None configuration has the longest average total runtime of 874.17 ± 5.71 s.

Interestingly, the last set of runs with the –nocache flag and NVMe filesystem show

an average total training time of 799.18±3.28 s, which is consistent with the results

obtained by the –nocache configuration. However, further investigation is needed

to understand these results more deeply.

The epoch training time plot (Figure 50) shows that the configuration without any

flags (None) takes the longest to train, with an average training time per epoch of

174.50± 0.85 seconds. This configuration reports a difference between first epoch

training time and average training time per epoch of about 118.5 s.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 63

Figure 49: AP3 E4 Intel System Runtime: Runtime for multiple experiments during
the training phase ap3-e4i-runtime-share

In contrast, the –nocache flag configuration shows an average first epoch training

time of 163.30±0.58 seconds and an average training time of 158.30±0.88 seconds

per epoch. The NVMe –nocache flag configuration takes slightly longer, with an av-

erage first epoch training time of 164.00 ± 0.57 s and an average training time of

159.50 ± 0.65 seconds per epoch.

As expected, the –dl_test –nocache flag configuration takes the least amount of

time, with an average first epoch training time of 119.70 ± 1.33 seconds and an

average training time of 120.30 ± 0.76 seconds per epoch.

Overall, the configuration with None flag takes significantly longer than the others,

while the –nocache and NVMe –nocache flag configurations show similar perfor-

mance.

The power consumption data for each configuration is shown in figure Figure 51,

and it’s evident that there is significant variability between them.

The average power consumption for the –nocache configuration is 178.29±37.30Wh,

while the None configuration has an average consumption of 161.34 ± 30.65Wh.

The –dl_test –nocache configuration has the lowest average power consumption at

104.95 ± 11.73Wh, while the NVMe –nocache configuration has an average con-

sumption of 155.19 ± 17.23Wh.

It’s worth noting that all configurations, except for the –dl_test –nocache configu-

ration, have similar power consumption range.

Based on the action metric shown in Figure 52, we can observe that the configu-

rations using –nocache and NVMe –nocache flags have similar action values, while

the –dl_test –nocache configuration has significantly lower values. The configura-

tion with no flags reports action values that are slightly longer than the others.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 64

Figure 50: AP3 E4 Intel System Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom)
ap3-e4i-epoch-time

Figure 51: AP3 E4 Intel System Energy: Total node energy consumption during
training phase ap3-e4i-energy

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 65

Looking at the action values for the different experiment configurations in Fig-

ure 52, we see that the experiments using the –nocache flag have an average

action value of 508.87± 102.13MJs, while the experiments with the –nocache flag

and NVMe filesystem have a slightly better performance with an average action

value of 446.31 ± 47.53MJs. This indicates that the NVMe configuration is more

efficient than the NFS one.

On the other hand, the tests with the –dl_test flag –nocache report an average

action value of 227.60± 20.83MJs, which is the smallest among all configurations,

as expected. The None configuration has an average action value of 507.52 ±
92.66MJs, which is similar to the –nocache configuration.

Figure 52: AP3 E4 Intel System Action: Action values (in MJs) for twelve applica-
tions using different flags during the training phase. ap3-e4i-action

4.3.4.2 Inference

Looking at Figure 53, we can see that experiment 0 had the longest total runtime

(34.36 seconds), while experiment 2 had the shortest (28.41 seconds). However,

experiment 0 had the longest data loading overhead (7.56 seconds), while exper-

iment 2 had the shortest total inference time (26.91 seconds). This suggests that

experiment 0 may have had more data to load into memory.

All experiments had a relatively short rest time, with the longest being only 1.18

seconds. This suggests that the inference process was relatively consistent across

experiments, with little variation in the amount data loading overhead.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 66

Figure 53: AP3 E4 Intel System Inference Runtime: Runtime and rela-
tive share for multiple experiments during inference phase
ap3-e4i-inf-runtime-share

4.3.5 E4 AMD System

In the AMD System, 9 experiments have been conducted on Juwels Booster, divided

into three triplets with different flags and configurations. The number of GPUs used

in these experiments was set to 1. The configuration for each triplet is as follows:

• Triplet 1: –nocache flag and the default (NFS) filesystem.

• Triplet 2: no flag and the default (NFS) filesystem.

• Triplet 3: –dl_test –nocache flag and the default (NFS) filesystem.

The runtime of the inference phase has also been reported, with three experiments

performed using this system.

4.3.5.1 Training

In Figure 54 we plotted the total training time, which cover the 99.8% of the total

runtime, for the nine experiment performed on the AMD System.

The three experiment performed with the –nocache flag are the one with the great-

est runtime that amounts to 2377.7±290.9 seconds. Then follows the experiments

without flag, with an average total training time of 2025.6 ± 170.8 seconds. For

what concerns the data loading instead, AMD show the best performance between

the four provided systems, with an average runtime of 235.1 ± 1.3 seconds.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 67

Even if this system is very fast in the data loading process, it results to be the

slowest in the training process.

In Figure 54, we can observe the total training time of nine experiments performed

on the AMD System, which covers 99.8% of the total runtime, while the 0.2% is

spent in the so called rest time which is negligible. Among these experiments,

those performed with the –nocache flag have the longest training runtime, with

an average of 2377.7 ± 290.9 seconds. Also, experiments without the flag have a

lower average total training time of 2025.6 ± 170.8 seconds.

In terms of data loading, the AMD System shows the best performance among the

four systems, with an average runtime of 235.1 ± 1.3 seconds. However, despite

the quick data loading, the AMD System is the slowest among the four systems

when it comes to training process.

Figure 54: AP3 E4 AMD System Runtime: Runtime for multiple experiments during
the training phase ap3-e4amd-runtime-share

In analyzing the comparison between epoch training time, we observe that the –

nocache flag exhibits a significant difference between the first epoch training time

and the average training time. This is unexpected as we would normally expect

this difference to be small in the nocache configuration. The average difference

between the first and average epoch training time is 385.50 ± 227.71 seconds.

To contrast with the previous observation, the experiments conducted without flags

exhibit a smaller difference between the first and average epoch training time,

varying from 5.2 seconds (run 2) to 250.6 seconds (run 0), which is a considerable

range. Notably, for experiments 1 and 2, this difference is only 6 and 5.2 seconds,

respectively, which is an unexpected behavior for the None configuration (it would

be more reasonable for the no-cache case).

As for the data loading test, we see, as expected, a very small difference between

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 68

the first and average epoch training time (0.6± 0.2 seconds) and an average train-

ing time of 47 seconds per epoch.

Further investigation is necessary to understand the behavior observed with the

–nocache and no flag configurations on the AMD System.

Figure 55: AP3 E4 AMD System Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom)
ap3-e4amd-epoch-time

In the figure provided, Figure 56, we can observe that the node energy consumption

is generally higher for experiments that were performed with the –nocache flag

compared to those without the flag. For instance, the average energy consumption

for experiments 0, 1, and 2 with the –nocache flag is 377.9 ± 9.2Wh, whereas it is

313.4 ± 10.1Wh for experiments 0, 1, and 2 without the flag. This comparison is

consistent with our earlier analysis of the application’s runtime.

Moreover, we can see that the energy consumption for the data loading test is sig-

nificantly lower than that of the training experiments, as expected, since data load-

ing is a less computationally intensive task on the AMD system. The average energy

consumption for experiments with the –dl_test –nocache flag is 39.8 ± 0.3Wh.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 69

Figure 56: AP3 E4 AMD System Energy: Total node energy consumption during the
training phase ap3-e4a-energy

As shown in Figure 57, in the set of experiments using the –nocache flag, the av-

erage action value is 3239.05 ± 476.68MJs, which is the highest among all con-

figurations. The experiments without any flag have an average action value of

2287.65 ± 197.58MJs.

In terms of data loading performance, the AMD system outperforms the E4 system,

with an average runtime of 33.69 ± 0.44 seconds. Interestingly, the experiments

with no flags show the best performance for data loading in this set of experiments.

Figure 57: AP3 E4 AMD System Action: Action values (in MJs) for nine applications
using different flags during the training phase. ap3-e4a-action

4.3.5.2 Inference

For the inference case, three different experiment were performed. As can be seen

in Figure 58, the total runtime of the inference is shared between the data loading

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 70

overhead, the actual inference time, and the rest time. The data loading overhead

is quite small, ranging from 0.61 to 0.66 seconds, while the actual inference time

ranges from 13.15 to 13.69 seconds. The rest time is consistent across all exper-

iments, at approximately 1.4 seconds. In conclusion, we can say that the total

runtime of the inference test is primarily determined by the actual inference time,

with data loading overhead and rest time being relatively small components of the

total runtime.

Figure 58: AP3 E4 AMD System Inference Runtime: Runtime and rel-
ative share for multiple experiments and two configurations
ap3-e4a-inf-runtime-share

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 71

4.3.6 Results

The measurements conducted in the AP3 context indicate that most of the run-

time (about 99%) is spent in training. However, tests performed with the –dl_test

flag show that the application streams in data while training and there is strong

evidence of the performance being I/O-bound, except for the AMD system, which

reports a much lower runtime than the others in the data loading test.

Generally, the training time decreases from the AMD system (which reports the

longest runtime) with the Mi100 GPUs, to the Intel system, which reports the short-

est runtimes with the A100 GPU. In terms of inference, the best performance in

terms of time is obtained by the AMD system, with an average of 15.3 seconds,

while the longest runtimes were recorded in the JSC systems, which report very

similar values and average 44.4 seconds.

In terms of power consumption, the power consumption of individual GPUs in JSC

systems is slightly higher in the Cluster case (about 16% higher than in the Booster

case). In the E4 systems, where we have the measurements inherent to the con-

sumption of the entire node, we can see that the consumption related to the flags

of the training phases is halved in the Intel system, while the AMD system reports

the lowest consumption for the test runs on data loading.

Considering the training tests with the –nocache flag and the None case, which are

common to both the Intel and AMD systems, it can be seen that the Intel system

outperforms the AMD system. The average action value between the –nocache

and None configuration is, for the Intel system, 508.19± 87.22MJs, while the AMD

system has a much higher value of 2763.35 ± 614.86MJs.

On the other hand, when it comes to data-loading tests, the AMD system performs

better with an average action value of 33.69± 0.44MJs, compared to the 227.60±
20.83MJs of the Intel system, as also reported in the analysis.

Regarding the use of different filesystems, using HPST and NVMe did not provide

the expected performance improvement in terms of runtime and consumption. This

aspect will be investigated more closely to achieve the expected performance for

the next deliverable.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 72

4.4 AP 4

4.4.1 Notes

Training
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

64GB 2.5GB 1889 [14, 361, 720] 1

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

633698 0 CRPS None

Data formats Frameworks (to be) used

NetCDF (.nc) PyTorch 1.11

Application 4 aims to improve the precision and effectiveness of weather fore-

casts by utilizing deep neural networks to process the ensemble outputs of numer-

ical weather prediction systems. This is achieved through the use of the ENS-103

dataset, which contains ten ensemble members spanning 20 years from 1998 to

2017. The UNet model is used to predict geopotential at 500 hPa, represented by

Z500.

To train the model, we used the entire ENS-10 dataset at 500hPa and used the

ERA-5 dataset as the ground truth. The model was trained for three epochs with a

batch size of one, and the Adam optimizer was used in all our experiments. In ad-

dition, we utilized the NetCDF data format and implemented a PyTorch dataloader

to efficiently process the data for the model.

The underlying data of illustrations in this section can be found in appendix 6.4.

4.4.1.1 IO Issue

To run our application, we implement a PyTorch dataset. To this end, we use the

xarray package to read the NetCDF files. We found that this is the main bottleneck

in our IO as for every data point, we extract the corresponding date in our dataset

from the NetCDF file, calculate the mean and standard deviation over all ensem-

bles, and form the PyTorch tensor. We repeat this process for every single access to

3https://arxiv.org/abs/2206.14786

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 73

https://arxiv.org/abs/2206.14786

the dataset, which takes much time. We plan to fix this issue by preprocessing all

the data points before training time and saving them into other formats (like .NPY),

or using a more efficient data loader. We investigate this issue in the following

steps.

4.4.2 JUWELS Booster

In the Juwels Booster, within the AP4, a total of 6 runs were performed. These runs

were organized into two groups, with each group consisting of 3 runs. The differ-

ence between the two groups was the filesystem used during the experiments.

In the first group of 3 runs, the GPFS filesystem was utilized, while in the second

group, the HPST was used.

4.4.2.1 Training

Figure 59: AP4 JUWELS Booster Runtime: Runtime and relative share for multiple
experiments ap4-jwb-runtime-share

To perform these tests, we use a single A100 GPU on the Juwels Booster for each

experiment and repeat them three times with different random seeds. Some varia-

tion between different benchmark runs can be observed in Figure 59 with regard to

the distribution of time spent between loading data, training time, and rest time,

as well as the absolute time spent on training. It shows that using the current data

format, almost all the runtime is spent on the IO. On the GPFS (SCRATCH directory),

loading data time varies between 95% and 96% of the total runtime.

As the application is IO-bounded, the total runtime is affecected by changing the

file system. To this end, on the HPST (CSCRATCH directory), the loading data time

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 74

varies between 94.9% and 98.7%, while training time between varies between

0.4% and 4.3%.

Figure 60: AP4 JUWELS Booster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom)
ap4-jwb-epoch-time

The time to train the first training epoch and the average of all epochs is shown

in Figure 60 for different repeating runs. The first epoch takes more time in almost

all of the runs, possibly due to the compilation overhead for building parts of the

computational graph for training. In addition, as the application is IO-bounded, we

see that training the model in the HPST file system (CSCRATCH directory) takes

more runtime (almost 5.5 times more).

Due to the large difference in runtime, Figure 61 shows that there is a substantial

difference also in the energy consumption of the GPU when using the CSCRATCH

and SCRATCH disks. On average, the GPU energy consumption is significantly higher

when using the CSCRATCH disk, with an average of 285.26± 5.35Wh compared to

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 75

Figure 61: AP4 JUWELS Booster Energy: Total GPU energy consumption for the
training phase ap4-jwb-energy

an average of 58.9 ± 3.5Wh when using the SCRATCH disk.

4.4.3 JUWELS Cluster

Also in the Juwels Cluster, a total of 6 runs were performed. These runs were orga-

nized into two groups, with each group consisting of 3 runs. The distinction between

the two groups was the filesystem used during the experiments.

In the first group of 3 runs, the GPFS filesystem was utilized, while the HPST was

used in the second group.

Figure 62: AP4 JUWELS Cluster Runtime: Runtime and relative share for multiple
experiments ap4-jwc-runtime-share

On Juwels Cluster we use a single V100 GPU on the JUWELS cluster for each ex-

periment and repeat them three times with different random seeds (similar to the

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 76

JUWELS BOOSTER experiments). Some variation between different benchmark runs

can be observed in Figure 62 with regard to the distribution of time spent between

loading data, training time, and rest time, as well as the absolute time spent on

training. Again, our results show that most of the runtime is spent on loading the

data. This may be because of the overhead of processing large NetCDF formats and

generating the PyTorch tensor from those files. On the GPFS (SCRATCH directory),

loading data time is about 97.1%, while training time varies between 1.0% and

1.2%. On the HPST (CSCRATCH directory), the loading data time is about 98.4% of

the total runtime, while training time varies between 0.3% and 0.4%.

The time to train the first training epoch and the average of all epochs is shown

in Figure 63 for different repeating runs. In most of the runs, the first epoch takes

slightly longer, which could be attributed to the compilation overhead of building

parts of the computational graph for training. However, this difference is not sig-

nificant when compared to the time taken for the other epochs. Interestingly, we

observe that training the model in the HPST file system (CSCRATCH directory) takes

significantly longer to execute, taking approximately 2.6 times more compared to

the GPFS case.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 77

Figure 63: AP4 JUWELS Cluster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom)
ap4-jwc-epoch-time

4.4.4 E4 Intel System

Within the AP4 , only the Intel System provided by E4 was used, and with this

system three runs have been performed.

Each experiment was executed on a single node with an A100 GPU and the NFS

filesystem, the obtained results in term of runtime are represented in Figure 64,

where some variation between different benchmark runs can be observed with re-

gard to the distribution of time spent between loading data, training time, and rest

time. As in the Juwels cases, using the current data format almost all the runtime is

spent on the IO. In fact we can see that loading data time is the largest component

of the total runtime for each run, which covers 96.8% and 97.4% of the total run-

time, suggesting that it is the significant bottleneck in the training process of the

AP4.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 78

The time spent in training varies between 0.7% and 0.9% and it is roughly the

same for each run. Then there is the rest time (time is spent on tasks such as

saving checkpoints or updating the model’s parameters) that varies between 1.7%

and 2.2% of the total runtime.

Figure 64: AP4 E4 Intel System Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right)
ap4-e4i-runtime

Figure 63 illustrates the comparison between the average training time per epoch

and the time to train the first epoch for different runs. It is worth noting that only

in the first run, the first epoch takes slightly longer, which could be due to the

overhead of building parts of the computational graph for training. However, this

difference is not significant for runs 2 and 3, as the ratio between the time to train

the first epoch and the average time per epoch is almost 1.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 79

Figure 65: AP4 E4 Intel System Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right)
ap4-e4i-epoch-time

4.4.5 Results

Based on the analysis and the information provided at the beginning of the section,

the data loading part is a significant bottleneck for this application, accounting for

between 95% to 97% of the total runtime.

In the AP4 benchmarks, the longest runtimes were observed, taking 3158 s to

3305 s on JUWELS Booster and 7814 s to 7967 s on the JUWELS cluster with GPFS

filesystem, while on the Intel system and NFS filesystem it took 6754 s to 8914 s.

However, when using the HPST disk, the runtime on the JSC systems increases sig-

nificantly, taking between 17010 s to 17914 s on Juwels Booster and 19971 s to

20314 s on Juwels Cluster.

This is due to the large dataset size (ENS-10 dataset is 3TB of data) used by AP4.

However, despite the ease of use of the NetCDF format, experiments have shown

that processing the data using this format adds considerable overhead. In addition,

AP4 experiences an issue with the HPST disk, as mentioned in this document, where

the requirement of FUSE Direct-IO on the HPST causes some single process access

with specific patterns to be slower compared to directly accessing SCRATCH. AP4

appears to suffer the most from this performance drop when using the HPST. We

are currently working with the system administrators to further investigate this

performance drop and methods to possibly mitigate it.

Due to technical problems, we were only able to report GPU consumption in the

Booster case, which, in the HPST case, is five times higher than the consumption

in the GPFS case.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 80

4.5 AP 5

4.5.1 Notes

Data formats Frameworks (to be) used

NetCDF Tensorflow v2.6.0 with Keras API

The raw data associated to graphs of this section is listed in appendix 6.5.

Training
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

47.43GB 4.2GB 94052 [96, 120, 10] 32/192

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

5113819 5280
Earth Mover dis-
tance, gradient
penalty and L1

The benchmarked WGAN performs
adversarial optimization of its gen-
erator and critic model. The critic
gets updated 5x before the gnera-
tor gets updated once (6 substeps).
While the batch-size for each sub-
step is 32, the total batch-size for it-
eration is 192=6x32.

In scope of this benchmarking effort, the same dataset as in deliverable 1.3 is used.

This, so-called Tier-2, dataset provides 13 years of paired ERA5- and COSMO-REA6

data where the former comprises several coarse-grained predictors for the target

downscaling product, the high-resolved 2m temperature field of the latter reanaly-

sis dataset. With a target domain of 120 × 96 grid points in longitude and latitude

direction, eleven variables and more than 94K samples, the training dataset re-

quires 47.73 GB of memory. Even though this dataset fits into the CPU memory

of all benchmarked HPC-systems, a new data loader has been developed for this

deliverable. The motivation for this is to enable future usage of datasets which are

too large to fit into memory.

In short, the data loader is built up on a 3 stage processing pipeline. In the first

step, a randomly sampled subset of monthly netCDF-file is read into memory. Note

that this constitutes a notable difference to the data loader in AP 1, where only

one netCDF-file is processed. Splitting up the complete dataset (comprising 132

netCDF-files) into subsets of monthly netCDF-files ensures that proper Monte Carlo

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 81

sampling along the time-dimension is performed, while the data still fits into mem-

ory. Here, one subset comprises 33 files. During the reading process, variables of

interest are extracted and normalized. In the subsequent processing steps, further

shuffling (Monte Carlo sampling) is performed on the samples of the data subset

and the data is split up into input and target data for the supervised optimization

of the downscaling neural network.

As benchmark neural network, we choose the Wasserstein Generative Adeversar-

ial Network (WGAN) of deliverable 1.3. This WGAN deploys an U-Net as generator,

whereas a conventional convolutional network serves as critic model. Due to the

fact that the critic model is updated more often than the generator, one train-

ing step consumes several mini-batches, in particular six in our experiments. Thus,

the data pipeline during training (implemented with Tensorflow’s tf.data.Dataset

API) provides 192 = 6 × 32 samples per training step.

The WGAN is trained on a single GPU only, whereas future work is devoted to en-

able data-distributed training.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 82

4.5.2 JUWELS Booster

Within AP5 , a total of six runs were conducted to evaluate the training and infer-

ence performance on Juwels Booster. Three of these runs used the GPFS filesys-

tem located in SCRATCH, while the other three used the HPST filesystem located

in CSCRATCH. All runs were conducted under the same configuration to enable a

comparison of the impact of the two filesystems both on training and inference.

4.5.2.1 Training

In Figure 66 we report the distribution of time spent between loading data and

training time for each experiments. It is important to notice that the data loading

and training processes occur simultaneously. The CPU is responsible for reading

and processing data from the disk, including prefetching, and at the same time, it

supplies the GPU with the data to perform the forward and backward steps of the

neural network. This way, the GPU is continuously engaged in training the network

while the CPU is continuously preparing a new mini-batch for the upcoming itera-

tion step. This allows for efficient usage of both the CPU and GPU resources and

results in faster training times.

In the GPFS case, the average total runtime is 2909.1 ± 25.7 , with the training

process taking up 2882.1 ± 24.6on average and data loading requiring 1949.0 ±
10.2 On the other hand, the HPST case has a total runtime of 2829.2 ± 14.4 , with

a mean training time and data loading time of 2785.7 ± 17.6and 2374.2 ± 48.5 s,

respectively.

Overall, the HPST case is faster than the GPFS case in terms of total runtime and

training time. However, data loading takes longer in the HPST case compared to

the GPFS case.

In Figure 67, we can observe the time taken to train the first epoch and the aver-

age training time per epoch for multiple runs, in both GPFS and HPST file systems.

Across all runs, the first epoch takes slightly longer compared to the average train-

ing time per epoch. Specifically, in the GPFS case, the first epoch training time is

609.0±8.2 s on average, while the average training time per epoch is 576.4±4.9 s.

For the HPST case, these values are 593.0±3.6 s and 557.1±3.5 s, respectively. The

time difference between the first epoch training time and the average training time

per epoch is almost the same for both GPFS and HPST, amounting to 34.2 ± 4.3 s.

However, the average training time per epoch is slightly lower in the HPST case,

indicating that the HPST file system is faster in epoch training compared to the

GPFS file system.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 83

Figure 66: AP5 JUWELS Booster Runtime: Runtime and relative share for multiple
experiments during the training phase ap5-jwb-runtime-share

The figure Figure 68 shows that the energy consumption related to the GPU is

consistent across the different disks (SCRATCH and CSCRATCH), ranging from 79.2

Wh to 86.7 Wh. On average, the GPU consumption is about 83.4 ± 3.1Wh.

4.5.2.2 Inference

Six experiments have been performed using both SCRATCH and CSCRATCH to test

the inference and the results are shown in Figure 69. Looking at the total inference

time, we can see that the times range from 9.96 s to 17.87 s for GPFS with an

average of 12.39±3.22 s, and from 9.12 s to 16.48 s for CSCRATCH with an average

of 12.21 ± 3.06 s.

Breaking down the components further, we can see that for GPFS, the model load-

ing times range from 2.87 s to 3.85 s with an average of 3.21 ± 0.42 s, and the

data loading times range from 9.2 s to 9.41 s with an average of 9.29± 0.10 s. For

CSCRATCH, the model loading times range from 2.713 s to 3.811 s with an average

of 3.18 ± 0.44 s, and the data loading times range from 18.78 s to 20.02 s with an

average of 19.18 ± 0.56 s.

Overall, the model loading component is uniform across all experiments, and the

same is true for the total inference time. The largest difference between the two

filesystems is found in data loading, which takes just over twice as long in the

CSCRATCH case compared to the SCRATCH case.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 84

Figure 67: AP5 JUWELS Booster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom)
ap5-jwb-epoch-time

Figure 68: AP5 JUWELS Booster Energy: Total GPU energy consumption during the
training phase ap5-jwb-energy

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 85

Figure 69: AP5 JUWELS Booster Inference Runtime: Runtime and relative share for
multiple experiments ap5-jwb-inf-runtime-share

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 86

4.5.3 JUWELS Cluster

In the AP5 on the Juwels Cluster, a total of 6 runs were conducted to test the train-

ing phase, with 3 runs using the SCRATCH disk and the other 3 using the CSCRATCH

disk. Additionally, other six runs were performed with the same configuration to

test the inference phase.

4.5.3.1 Training

In Figure 70, we present the time distribution for each experiment between data

loading and training. In the case of the GPFS filesystem, the average total runtime

is 5358.5± 13.2 , with the training process taking on average 5293.6± 10.9 s, and

the data loading requiring 3590.4 ± 32.1 s. On the other hand, for the CSCRATCH

filesystem, the total runtime is 5306.2± 48.6 , with a mean training time and data

loading time of 5245.3 ± 55.8 s and 3676.9 ± 48.7 s, respectively.

Overall, we observe that CSCRATCH is slightly faster during the training phase,

while it is slightly slower during the data loading phase. However, the execution

time between the two filesystems is homogeneous in general. It is important to

note that compared to the Booster case, the Juwels Cluster takes almost twice as

long to execute the application.

Figure 70: AP5 JUWELS Cluster Runtime: Runtime and relative share for multiple
experiments during the training phase. ap5-jwc-runtime-share

In Figure 71, we can see the time taken to train the first epoch and the aver-

age training time per epoch. Across all experiments, the first epoch takes slightly

longer than the average training time per epoch. In the GPFS case, the average

first epoch training time is 1114.7 ± 5.5 s, while the average training time per

epoch is 1058.7 ± 13.2 s. In the HPST case, these values are 1100.0 ± 10.8 s and

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 87

1049.1 ± 11.2 s, respectively. The difference between the first epoch training time

and the average training time per epoch is almost the same for both GPFS and

HPST, around 53.5 ± 5.1 s. Overall, the average training time per epoch and the

first epoch training time are slightly lower in the HPST case.

Figure 71: AP5 JUWELS Cluster Epoch Time: Comparison of time for first epoch
and average time for an epoch (top); ratio of both quantities (bottom).
ap5-jwc-epoch-time

The power consumption of the GPUs is presented in Figure 72, showing a consistent

and location-independent trend. Comparing with the results in Figure 68, it can be

observed that the newer A100 GPUs in the Booster outperform the older V100s

and consume less energy: specifically, in the Juwels Cluster, the average GPU en-

ergy consumption is 131.05± 2.78Wh, which is 1.5 times greater than the energy

consumption of the Booster case.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 88

Figure 72: AP5 JUWELS Cluster Energy: Total GPU energy consumption during the
training phase. ap5-jwc-energy

4.5.3.2 Inference

In Figure 73, we can see that the total inference time per run ranges from 15.58

to 16.02 seconds (in average 15.9 ± 0.3 s), with data loading time being the most

significant contributor, varying from 27.43 to 43.12 seconds (in average 34.6 ±
7.9 s), and the model loading time being relatively low, ranging from 6.79 to 7.41

seconds (in average 7.1 ± 0.3 s) . Loading the data consumes over 50% of the

total inference time in each run. The decreasing trend in the data loading phase

observed in the SCRATCH case needs further investigation.

In the CSCRATCH case, the model loading time ranges from 7.05 to 7.62 seconds,

with an average of 7.3 ± 0.3 seconds. The data loading time varies from 32.60 to

34.22 seconds, with an average of 33.2 ± 0.9 seconds. Finally, the total inference

time ranges from 15.59 to 17.08 seconds, with an average of 16.1 ± 0.8 seconds.

The results suggest that the model loading time and total inference execution time

are similar for both SCRATCH and CSCRATCH. However, data loading time remains

the bottleneck in the inference process for both cases, with the CSCRATCH case

showing more uniformity. Thus, it can be concluded that data loading is the most

time-consuming phase of the inference process, whereas inference and model load-

ing are relatively fast.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 89

Figure 73: AP5 JUWELS Cluster Inference Runtime: Runtime and rela-
tive share for multiple experiments durnig the inference phase.
ap5-jwc-inf-runtime-share

4.5.4 E4 Intel System

In the AP5 , we conducted three runs using the NFS filesystem on a single node with

one GPU in the Intel system. These runs aimed to test the training and inference

performance.

4.5.4.1 Training

As reported in Figure 74, the average total runtime of the three runs is 3176.9 ±
210.5 , which is characterized by the training and data loading processes that oc-

cur in parallel. The training process takes up 3148.9 ± 201.9on average and data

loading requiring 2751.5 ± 248.1
Comparing these results with the SCRATCH Booster case, we can see that the load-

ing data times in the Booster case are significantly shorter (almost 29% shorter)

than in the Intel case. The total training times are generally shorter, although the

difference is not as pronounced: in average, the difference between the total train-

ing time on Intel system and on Booster system amounts to 266.8 s.

Referring to the information presented in Figure 75, it is noticeable that the first

epoch training time and the average training time per epoch of each experiment

are quite similar, as indicated by the "Ratio" plot, which shows values close to

1. Specifically, the average training time per epoch is 629.8 ± 40.4 s, while the

average first epoch training time is 651.8± 43.9 s. The difference between the two

values is about 21.9 ± 4.8 s on average.

The plot of energy consumption reported in Figure 76 follows a similar trend to

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 90

Figure 74: AP5 E4 Intel System Runtime: Runtime and relative share for multiple
experiments during the training phase ap5-e4i-runtime-share

Figure 75: AP5 E4 Intel System Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right)
ap5-e4i-epoch-time

that of runtime, with the second test showing the highest node consumption of

922.9 Wh. The three experiments reported energy consumption values of 722.5

Wh, 922.9 Wh, and 743.5 Wh, respectively. On average, the power consumption of

a node in the Intel system is 796.3 ± 110.1Wh.

As reported in Figure 77, we can see that there is significant variation between the

values. Experiment 2 has the highest action value of 11348.04 MJs, while Experi-

ment 1 has the lowest action value of 7848.17 MJs. Experiment 3 has an interme-

diate action value of 8292.11 MJs. The difference between the highest and lowest

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 91

Figure 76: AP5 E4 Intel System Energy: Total node energy consumption
ap5-e4i-energy

Action values is substantial, with a range of 3499.87 MJs, with an average action

value that is 9156.44 ± 1500.39MJs.

Figure 77: AP5 E4 Intel System Action: Action values (in MJs) for three applications
during the training phase. ap5-e4i-action

4.5.4.2 Inference

According to Figure 78, there is a decreasing trend in the total runtime, with the

model loading being the only component that shows a constant time between the

three runs. In particular, data loading is the predominant component, accounting

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 92

for 70.6%, 74.5%, and 76.5% of the total runtime in the three runs, respectively.

The remaining runtime is spent on total inference time, which covers 27.5% of the

runtime in experiment 1 and 19.9% of the total runtime in runs 2 and 3.

While runs 2 and 3 show homogeneous values between the three components,

run 1 exhibits much higher values for data loading time and total inference time.

Specifically, runs 2 and 3 have an average data loading time and total inference

time of 59.8 ± 1.0 s and 15.8 ± 0.6 s, respectively, while run 1 has a data loading

time of 110.8 s and a total inference time of 43.2 s.

Figure 78: AP5 E4 Intel System Inference Runtime: Runtime and rela-
tive share for multiple experiments for the inference phase
ap5-e4i-inf-runtime-share

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 93

4.5.5 E4 AMD System

On the AMD system, within the AP5 , three experiments using the NFS filesystem,

with each run utilizing one node and one GPU were conducted. Additionally, three

runs were performed to test the inference process.

4.5.5.1 Training

Looking at Figure 79, we can see that three experiments have been conducted

to test the AMD system. For all the experiments, the total runtime is mainly split

between the data loading and the training process. The data loading and training

phases appear to have the same proportion of runtime across all three experi-

ments, indicating consistency in the system’s performance. On average, the data

loading phase takes 1440.8 ± 14.6 s, while the total training time takes 4962.4 ±
24.6 s. Both the loading data time and the total training time are relatively con-

sistent across all experiments. However, compared to the other machines, data

loading on the AMD system is the least time-consuming. On the other hand, the

training phase is much slower.

Figure 79: AP5 E4 AMD System Runtime: Runtime and relative share for multiple
experiments for the training phase ap5-e4a-runtime-share

In Figure 80, it can be observed that there is not a significant difference between

the first epoch training time and the average epoch training time for each experi-

ment. The average epoch training time for the three experiments is 992.5 ± 4.9 s,

which is only slightly shorter than the first epoch training time of 1026.3 ± 5.5
Comparing these results with the Intel system, it can be seen that the AMD system

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 94

takes 1.57 times longer in epoch training, both in terms of average training time

per epoch and first epoch training time.

Figure 80: AP5 E4 AMD System Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right)
ap5-e4a-epoch-time

Energy consumption, as shown in Figure 81, is considerably higher in the AMD

case compared to the Intel case. The average energy consumption of the AMD

system across the three runs is 1021.80 ± 4.93Wh, which is approximately 1.28

times higher than the average energy consumption of the Intel system (796.3 ±
110.1Wh). Also, it can be seen that the energy consumption remained consistent

across the three runs.

Figure 81: AP5 E4 AMD System Energy: Total node energy consumption during
training phase ap5-e4a-energy

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 95

Looking at the action values reported in Figure 82, we can see that they are all

relatively close to each other, with Experiment 1 having the highest action value

of 18507.79 MJs and Experiment 3 having the lowest action value of 18294.23

MJs. Experiment 2 has an action value of 18332.00 MJs, which is very close to the

values of the other two experiments. The average action for all three experiments

is 18378.00± 113.97MJs, indicating that the data is relatively consistent, and any

differences between the experiments may not be statistically significant.

Figure 82: AP5 E4 AMD System Action: Action variation during training phase
ap5-e4a-action

4.5.5.2 Inference

The three experiments aimed at testing inference exhibit remarkable homogene-

ity in terms of the distribution of runtime components, with model loading, data

loading, and total inference time showing consistent proportions across all experi-

ments.

Model loading is the smallest component in terms of runtime, averaging at 2.80 ±
1.02 s. Total inference time, which covers about 21.3% of the runtime, amounts to

an average of 14.8±0.1 s. The majority of the runtime is dedicated to data loading,

which represents a bottleneck for inference with a runtime of approximately 51.6±
0.1 s, accounting for 74.6% of the total runtime.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 96

Figure 83: AP5 E4 AMD System Inference Runtime: Runtime and rel-
ative share for multiple experiments during inference phase
ap5-e4a-inf-runtime-share

4.5.6 Results

In the context of AP5 , we conducted performance tests on both SCRATCH and

CSCRATCH filesystems in JSC systems, while only NFS filesystem was tested in E4

machines. Similar to AP3 , the AMD system shows better performance in data load-

ing, while Juwels Booster is the best system for training and inference runtime.

When using CSCRATCH instead of SCRATCH, Juwels Booster shows a 20% increase

in data loading time during training phase, but training time remains relatively con-

stant. On the other hand, in the Juwels Cluster case, both training and loading times

are consistent.

Comparing JSC systems, we find that V100 GPUs in Juwels Cluster consume 1.6

times more energy than A100s in Juwels Booster, and this is due to the longer

application execution time in the Cluster case (about 1.8 times longer than in the

Booster case).

Despite the AMD system being more efficient in terms of data loading, the Intel

system exhibits higher computational efficiency and energy savings. This can be

seen by comparing the Action values, which average at 9162.8 and 18378.0 MJs

for Intel and AMD cases, respectively.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 97

4.6 AP 6

4.6.1 Notes

Training
dataset

Memory
validation
dataset

Training
samples Input shape sample batch size

1.7GB
1.4GB

- 35 064 (128, 128, 3) 750

Trainable
parameters

Non-trainable
parameters Loss function Experimental notes

- - cross-entropy
100 epochs,1.7GB dataset on JSC
50 epochs, 1.4GB dataset on E4

Data formats Frameworks (to be) used

NetCDF, TIFF PyTorch

Previously, AP6 did not implement neural networks (NNs), but used rather con-

servative ML algorithms (Principal Component Analysis and K-means or HDBSCAN

clustering) to try achieve a linear dimensionality reduction of the data. In a new ap-

proach, AP6 aims to achieve a non-linear dimensionality reduction using a siamese

NN structure called DeepCluster v2 (DCv2) that allows self-supervised clustering

of visual features [1, 2]. The algorithm is implemented in the open-source VISSL

library from Facebook Artificial Intelligence Research (FAIR) [3].

DCv2 makes use of two branches to achieve self-supervised clustering:

1. The first branch runs the input image through a ResNet-50 [4] followed by a

simple multi-layer perceptron (MLP). The output feature vector of the MLP is

then used to apply a spherical K-means on the feature vector: the algorithm

is initiated with a random set of centroids, and each sample gets a label as-

signed based on the lowest cosine similarity between its feature vector and

the cluster centers.

2. The second branch is almost identical to the first branch: it runs the image

through a ResNet-50 and a MLP. Here, the resulting feature vector is then

used – together with the output of the upper branch – to calculate the cross-

entropy loss function. The network then tries to minimize this loss function by

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 98

sequentially adjusting the parameters in each layer through back propagation.

The resulting set of parameters is then used for the next iteration.

The algorithm requires input images of size 128× 128. However, each branch uses

an individual random crop that is 75% of the original image size, hence 96 × 96.

Here, we use hourly data from the IFS HRES model provided in the form of netCDF

files. Since the algorithm requires image data as input though, the training dataset

consists of TIFF images created from the netCDF source files. In order to convert

the data to TIFF, we extract three physical quantities (absolute wind speed, relative

humidity, and geopotential height at 500hP) on the 0.1◦ grid ranging 0–11.9◦E
and 43.77–55.76◦N, resulting in a 128×128 pseudo-RGB image, where each quan-

tity represents one of the color channels. For the conversion to RGB channels using

floating-point values in the range [0,1], each value in the physical fields is nor-

malized by scaling using the global spatio-temporal minimum and maximum of the

respective field.

AP6 makes use of Apptainer containers to run the application. For technical reasons

it was not possible to build the image for ROCm or ARM-based systems. Thus, these

systems could not be benchmarked with AP6.

In the following paragraphs, we are going to analyze the training performance of

the AP6 benchmark.

Data for the benchmarks which are shown here can be found in appendix 6.6.

The application code is accessible on GitHub4.

4https://github.com/4castRenewables/maelstrom-a6/tree/main/mlflow/deepclusterv2

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 99

https://github.com/4castRenewables/maelstrom-a6/tree/main/mlflow/deepclusterv2

Experiment number Number of Nodes Number of GPUs
1 1 1
2 1 2
3 1 4
4 2 4
5 4 4

Table 1: Configuration of each experiment number performed on Juwels Booster

4.6.2 JUWELS Booster

In AP6 , we used Juwels Booster to conduct five training runs with different con-

figurations. The configuration of each experiment is summarized in Table 1, which

includes the number of nodes and GPUs used in each case. Experiment 1 involved a

single node and GPU, while Experiment 5 utilized four nodes, each with four GPUs.

In Figure 84, it can be observed that the total runtime varies depending on the

number of nodes and GPUs used in the experiment. Experiment 1, which employed

only 1 node and 1 GPU, took 9496.6 seconds to complete. Experiment 2, which

used 1 node and 2 GPUs, had a longer total runtime than experiment 1 but was

shorter than experiment 3, which utilized 1 node and 4 GPUs. Experiment 3 has

the longest total runtime at 15031.9 seconds.

On the other hand, experiment 4, which utilized 2 nodes and 4 GPUs, had a shorter

total runtime than experiment 3. Finally, experiment 5, which employed 4 nodes

and 4 GPUs, had the shortest total runtime at 5278.4 seconds. This suggests that

increasing the number of nodes and GPUs can lead to significant improvements

in performance. However, it should be noted that experiment 2 and 3 also experi-

enced a runtime increase despite using more resources than experiment 1. There-

fore, the actual performance improvement is achieved when more than one node

is used, while the worst performance is reported by the case using 4 GPUs on a

single node.

As shown in Figure 85, by comparing the first epoch training time and the aver-

age epoch training time in AP6’s experiments, we can see that the ratio between

these two quantities changes as the number of nodes and GPUs used changes.

Specifically, in experiments 1 and 5, where only one GPU per node is used, the first

epoch training time is greater than the average epoch training time. However, in

the other experiments where more than one GPU per node is used, the average

epoch training time is greater than the first epoch training time. This difference

could be due to a contention delay between the resources.

The plot in Figure 86 shows the average energy consumption of a single GPU for

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 100

Figure 84: AP6 JUWELS Booster Runtime: Runtime and relative share for multiple
experiments ap6-jwb-runtime-share

Figure 85: AP6 JUWELS Booster Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right)
ap6-jwb-epoch-time

each of the five experiments. The plot indicates that there is a significant variation

in GPU energy consumption across the different experiments. Experiment 3 had

the highest mean GPU energy consumption, with an average of 361.5 Wh, while

experiment 5 had the lowest mean GPU energy consumption, with an average

of 119.97 Wh. The remaining experiments (1, 2, and 4) had mean GPU energy

consumption values of 180.86 Wh, 255.71 Wh, and 219.98 Wh, respectively.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 101

Figure 86: AP6 JUWELS Booster Energy: Total GPUs energy consumption (left);
peak and average GPUs power draw (right) ap6-jwb-energy

Experiment number Number of Nodes Number of GPUs
1 1 1
2 1 2
3 1 4
4 2 4
5 4 4

Table 2: Configuration of each experiment number performed on Juwels Cluster

4.6.3 JUWELS Cluster

In AP6 , Juwels Cluster was used to test five runs with different configurations dur-

ing the training phase. The table 2 shows the configuration of each experiment,

specifying the number of nodes and GPUs used in each case. The experiments

range from a single node and GPU (Experiment 1) to four nodes with four GPUs

each (Experiment 5).

The total runtime of five different experiments with varying configurations in terms

of the number of nodes and GPUs used for training is reported in Figure 87.

Experiments 1, 2, and 3 were performed on a single node and used 1, 2, and

4 GPUs, respectively. The total runtime for these experiments increased as the

number of GPUs used increased, with Experiment 3 having the longest runtime of

18,581.3 seconds.

Experiments 4 and 5 were performed on 2 and 4 nodes, respectively, and used 4

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 102

GPUs each. The total runtime for these two experiments decreased as the number

of nodes used increased, with Experiment 5 having the shortest runtime of 5,763.2

seconds. These results suggest that using more nodes can lead to a shorter total

runtime.

Figure 87: AP6 JUWELS Cluster Runtime: Runtime for multiple experiments
ap6-jwc-runtime

Figure 88 shows the epoch training times for five experiments. In the single node

configuration, as the number of GPUs increases, the training times generally in-

crease, as seen in experiments 1-3. Additionally, the first epoch training time is

typically shorter than the average training time per epoch.

In the multiple nodes case, experiment 4 had a first epoch training time of 6.758

seconds and an average training time per epoch of 13.370 seconds, while experi-

ment 5 had a lower average training time per epoch of 6.711 seconds and a first

epoch training time of 8.592 seconds. In general, as the number of GPUs and nodes

increases, the average training time per epoch also increases, except for experi-

ment 5. Experiment 4, with two nodes and four GPUs, had the highest average

training time per epoch of 13.370 seconds, while Experiment 5, with four nodes

and four GPUs, had an average training time per epoch of 6.711 seconds.

The energy consumption of the GPU in the five experiments is shown in Figure

Figure 89. The energy consumption ranges from 110.717 Wh (Experiment 5) to

395.369 Wh (Experiment 3). The results suggest that in the single node configura-

tion, increasing the number of GPUs on a node also increases the average energy

consumption of a single GPU. However, using more nodes and GPUs can result in a

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 103

Figure 88: AP6 JUWELS Cluster Epoch Time: Comparison of time for first epoch
and average time for an epoch (left); ratio of both quantities (right)
ap6-jwc-epoch-time

lower average energy consumption per GPU, as observed in Experiment 5.

Figure 89: AP6 JUWELS Cluster Energy: Total node energy consumption (left); peak
and average node power draw (right) ap6-jwc-energy

4.6.4 E4 Intel System

Within AP6 , two experiment were performed on the E4 Intel System. The configu-

ration and the the available metrics of this analysis are reported in 3.

The table provides insights into the impact of different configurations on training

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 104

Experiment
number #Nodes #GPUs

Total
runtime [s]

Avg. training time
per epoch [s]

Node energy
consumption [Wh]

1 1 1 6240.74 2.46 1041.18
2 2 1 3936.07 2.85 655.02

Table 3: Training on E4 Intel System

performance and energy consumption. The use of two nodes with one GPU each

resulted in a significantly shorter total runtime of 3936.077 seconds, compared

to the single node and single GPU configuration, which took 6240.740 seconds,

representing a 37% decrease. This demonstrates that increasing the number of

nodes and GPUs can improve training performance and reduce overall runtime.

Regarding the average training time per epoch, there is a relatively small difference

between the two experiments. However, Experiment 2 takes slightly longer than

Experiment 1 and this aspect needs further checks and investigation.

Looking at the Node energy consumption values, the reported value for Experiment

2 corresponds to the average energy consumption of both nodes. This experiment

was more energy-intensive due to the use of two nodes. However, it was able

to complete the same task in less time due to the increased resources available,

resulting in a more efficient use of energy.

4.6.5 Results

In AP6, the runtime was measured on JUWELS Booster, JUWELS Cluster, and the

Intel system using different hardware configurations. In the JSC context, a total of

five tests were conducted for each machine, ranging from using a single node with

a single GPU to four GPUs distributed on four different nodes. Experiment 5, which

employs four nodes with one GPU each, was found to have the best performance in

both cases. When comparing the runtime and energy consumption of experiment 5

on both JSC systems, we found that the Booster case had a slightly faster runtime,

while the energy consumption was similar.

In the E4’s Intel System, we conducted two tests on a single machine, one using

a single node with one GPU and the other using two nodes with one GPU each.

Based on our observations, the latter configuration performed better in terms of

both runtime and energy consumption.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 105

5 Conclusion

The work done in this deliverable showed strong cooperation between partners pro-

viding the computing systems and those developing the applications, often running

applications in a coordinated manner between developers and hardware engineers

to verify all the physical parameters of the computing systems.

For each application, data were collected and presented in the form of graphs in

the various dedicated sections.

When it has been possible to parallelize application training across multiple GPUs,

as in the case of AP2 on Julich’s machines, a significant increase in performance

has been seen; we can say that this is one of the path to follow in future develop-

ments. As the previous deliverable has shown a strong impact of IO on training and

inference time, great care was taken to test the performance of different filesys-

tems (NFS, local NVMe, GPFS, HPST), and it was found that the optimal choice of

the file system can reduce data loading time during training and reduce the total

time-to-solution by up to 54% (see AP1). It was possible to use the newly suggested

"Action" score metric for the AP1, AP2, AP3 and AP5. Results show that Action is

minimized for the Intel system which indicates an advantage when using Intel pro-

cessors. Further studies will be performed to understand the reasons for this in

more detail.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 106

References

[1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep

clustering for unsupervised learning of visual features. CoRR, abs/1807.05520,

2018.

[2] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and

Armand Joulin. Unsupervised learning of visual features by contrasting cluster

assignments, 2021.

[3] Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu,

Benjamin Lefaudeux, Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bo-

janowski, Armand Joulin, and Ishan Misra. Vissl. https://github.com/

facebookresearch/vissl, 2021.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. CoRR, abs/1512.03385, 2015.

6 Appendix

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 107

https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl

Notes SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH
Experiment number 1 2 3 4 5 6 7 8 9 10 11 12

Job ID 6734785 6737281 6737357 6734793 6737282 6737358 6736672 6737283 6737359 6754538 6754539 6754540
#Nodes 1 1 1 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 2 2 2 4 4 4 4 4 4

#MPI tasks 1 1 1 2 2 2 4 4 4 4 4 4
#CPUs per task 48 48 48 24 24 24 12 12 12 12 12 12
Total runtime 694.34 681.94 673.29 536.18 511.58 491.48 460.42 462.29 482.59 487.79 503.94 489.11

Total training time 694.03 681.65 673.00 535.90 511.20 491.15 460.10 461.87 482.15 487.43 503.59 488.65
Avg. training time per epoch 231.20 227.13 224.23 178.53 170.33 163.60 153.29 153.82 160.65 162.30 167.70 162.71

Performance [GB/s] 1.43 1.45 1.47 1.85 1.94 2.01 2.15 2.14 2.05 2.03 1.96 2.02
First epoch training time 284.49 274.57 271.35 233.07 212.49 212.07 216.50 218.20 216.58 239.38 249.90 241.73

Min. training time per epoch 194.27 193.73 193.75 142.06 142.24 125.34 95.92 91.96 94.56 102.53 102.57 99.11
Max. training time per epoch 284.49 274.57 271.35 233.07 212.49 212.07 216.50 218.20 216.58 239.38 249.90 241.73
Avg. training time per batch 0.98 0.96 0.95 0.76 0.72 0.69 0.65 0.65 0.68 0.69 0.71 0.69

Final training loss 0.24 0.25 0.25 0.23 0.26 0.24 0.38 0.25 0.25 0.28 0.25 0.26
Final validation loss 0.27 0.27 0.29 0.28 0.29 0.32 0.33 0.32 0.29 0.29 0.32 0.29

Max CPU memory per MPI task [GB] 129.48 130.26 125.72 118.35 118.16 124.37 114.98 119.46 116.99 108.25 110.97 115.12
MAX GPU memory per MPI task[GB] 27.07 27.21 27.07 27.30 27.30 27.19 27.40 27.40 27.40 27.19 27.07 27.19

Node ID jwb0727 jwb0215 jwb0093 jwb0388 jwb0216 jwb0119 jwb0150 jwb0217 jwb0138 jwb1241 jwb1083 jwb1084
Max. GPU power [W] 327.61 341.05 313.16 338.44 354.09 318.44 323.11 330.71 351.86 346.47 335.99 325.39
Avg. GPU power [W] 78.37 81.42 85.73 92.84 102.03 118.16 110.40 121.57 135.17 135.30 109.09 98.07

GPU energy consumption [Wh] 15.12 15.42 16.03 13.83 14.50 16.13 14.12 15.61 18.12 18.33 15.27 13.32

Table 4: AP1 JUWELS Booster training benchmark

6.1 AP 1

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 108

Notes SCRATCH SCRATCH SCRATCH
Experiment number 1 2 3

Job ID 6737400 6737464 6737465
#Nodes 1 1 1
#GPUs 1 1 1

#MPI tasks 1 1 1
#CPUs per task 40 40 40
Total runtime 1531.54 1518.48 1520.98

Total training time 1531.19 1518.21 1520.65
Avg. training time per epoch 510.23 505.95 506.79

Performance [GB/s] 0.65 0.65 0.65
First epoch training time 526.40 525.98 525.67

Min. training time per epoch 487.51 482.33 487.83
Max. training time per epoch 526.40 525.98 525.67
Avg. training time per batch 1.08 1.07 1.07

Final training loss 0.23 0.23 0.22
Final validation loss 0.33 0.27 0.27

Max CPU memory per MPI task [GB] 107.60 107.70 107.25
MAX GPU memory per MPI task[GB] 12.04 12.04 12.04

Node ID jwc09n066 jwc09n066 jwc09n066
Max. GPU power [W] 310.70 296.75 297.43
Avg. GPU power [W] 77.92 69.90 66.62

GPU energy consumption [Wh] 33.15 29.48 28.15

Table 5: AP1 JUWELS Cluster training benchmark

Notes /scratch_local /scratch_local /scratch_local /data /data /data
Experiment number 0 1 2 0 1 2

Job ID 2573 2574 2575 2585 2586 2587
#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1
#CPUs per task 32 32 32 32 32 32
Total runtime 1610.62 1280.85 1355.7 2095.96 1946.28 2070.76

Total training time 1606.51 1276.81 1351.69 2091.96 1942.26 2066.73
Avg. training time per epoch 535.42 425.53 450.49 2091.66 1942.08 2066.4

Performance [GB/s] 0.62 0.77 0.73 0.16 0.17 0.16
First epoch training time 509.67 486.1 493.15 2091.66 1942.08 2066.4

Min. training time per epoch 509.67 386 418.36 2091.66 1942.08 2066.4
Max. training time per epoch 553.53 486.1 493.15 2091.66 1942.08 2066.4
Avg. training time per batch 2.27 1.81 1.91 8.88 8.25 8.77

Final training loss 0.217 0.219 0.207 0.466 0.5 0.46
Final validation loss 0.279 0.197 0.209 0.231 0.32 0.208

Max CPU memory per MPI task [GB] 114.8 114.9 114.5 48.76 49.3 49
MAX GPU memory per MPI task[GB] 27 27 27 27 27 27

Node ID ICNODE01 ICNODE01 ICNODE01 ICNODE01 ICNODE01 ICNODE01
Max. power [W] 810 797 806 765 759 781
Avg. power [W] 583.9683698 591.3626374 589.0621118 527.6299879 512.003632 514.5656442

Energy consumption [Wh] 261.26 210.40 221.83 307.19 276.81 295.98
Action [MJs] 1514.87047 970.1757774 1082.650503 2317.904033 1939.472747 2206.481655

Table 6: AP1 E4 Intel System training benchmark.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 109

Notes /data /data /data
Experiments 3 4 5

Job ID 2544 2545 2565
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 32 32 32
Total runtime [s] 106.32 96.37 111.91

Data loading overhead [s] 85.62 76.04 91.06
Total inference time [s] 20.38 20.01 20.30

Performance [GB/s] 0.13 0.14 0.12
Max CPU memory per MPI task [GB] 35.62 35.66 36.55
MAX GPU memory per MPI task[GB] 5.14 5.14 5.14

Node ID ACNODE01 ACNODE01 ACNODE01
Max. power [W] 605.00 619.00 598.00
Avg. power [W] 460.45 463.28 455.36

Energy consumption [Wh] 10.95 9.79 11.52
Action [MJs] 4.191489128 3.394900325 4.640391006

Table 7: AP1 E4 AMD System training benchmark

Notes SCRATCH SCRATCH SCRATCH
Experiments 0 1 2

Job ID 6753182 6753183 6753195
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 48 48 48
Total runtime [s] 40.09 44.86 40.05

Data loading overhead [s] 10.56 9.67 9.42
Total inference time [s] 29.17 34.8 30.28

Performance [GB/s] 0.34 0.31 0.34
Max CPU memory per MPI task [GB] 35.17 35.26 34.75
MAX GPU memory per MPI task[GB] 7.94 7.94 7.94

Node ID jwb0090 jwb0220 jwb0090
Max. GPU power [W] 67.61 61.81 67.94
Avg. GPU power [W] 60.78 58.39 61.00

GPU energy consumption [Wh] 0.18 Wh 0.16 Wh 0.16 Wh

Table 8: AP1 JUWELS Booster inference benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 110

Notes /scratch_local /scratch_local /scratch_local /data /data /data
Experiments 3 4 5 6 7 8

Job ID 2550 2551 2567 2553 2554 2566
#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI Tasks 1 1 1 1 1 1
#CPUs per task 32 32 32 32 32 32
Total runtime [s] 57.27 57.61 57.36 121.70 115.32 126.90

Data loading overhead [s] 22.46 22.76 22.90 86.43 80.33 91.80
Total inference time [s] 34.62 34.62 34.24 34.89 34.77 34.87

Performance [GB/s] 0.24 0.24 0.24 0.11 0.12 0.11
Max CPU memory per MPI task [GB] 34.21 34.07 34.14 34.44 34.35 34.29
MAX GPU memory per MPI task[GB] 7.94 7.94 7.94 7.94 7.94 7.94

Node ID ICNODE01 ICNODE01 ICNODE01 ICNODE01 ICNODE01 ICNODE01
Max. power [W] 736.00 736.00 711.00 708.00 712.00 712.00
Avg. power [W] 533.86 532.38 510.80 511.59 507.17 505.32

Energy consumption [Wh] 3.33 3.37 3.25 12.28 11.32 12.89
Action [MJs] 0.6866983443 0.6980566465 0.6709582752 5.381200908 4.698224133 5.886723454

Table 9: AP1 E4 Intel System inference benchmark.

Notes /data /data /data
Experiments 3 4 5

Job ID 2544 2545 2565
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 32 32 32
Total runtime [s] 106.32 96.37 111.91

Data loading overhead [s] 85.62 76.04 91.06
Total inference time [s] 20.38 20.01 20.30

Performance [GB/s] 0.13 0.14 0.12
Max CPU memory per MPI task [GB] 35.62 35.66 36.55
MAX GPU memory per MPI task[GB] 5.14 5.14 5.14

Node ID ACNODE01 ACNODE01 ACNODE01
Max. power [W] 605.00 619.00 598.00
Avg. power [W] 460.45 463.28 455.36

Energy consumption [Wh] 10.95 9.79 11.52
Action [MJs] 4.191489128 3.394900325 4.640391006

Table 10: AP1 E4 AMD System inference benchmark.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 111

Experiment number 1 2 3 4 5 6 7 8 9 10
Job ID 7460059 7460190 7460997 7437143 7437575 7453022 7438081 7450985 7451513 7451585
#Nodes 1 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 2 2 2 4 4 4 4
#MPI tasks 1 1 1 1 1 1 1 1 1 1
#CPUs per task 48 48 48 48 48 48 48 48 48 48
Total runtime 967.259 1,066.503 1,025.192 632.661 615.763 650.677 443.626 451.197 449.225 471.384
Total training time 930.955 1,027.002 987.800 595.507 578.838 613.075 402.704 409.020 407.212 429.081
Training time for epoch 893.864 990.217 950.993 560.605 544.026 576.486 366.691 372.928 369.852 392.741
Avg. training time per batch 0.066 0.066 0.066 0.099 0.099 0.099 0.144 0.146 0.145 0.145
Final training loss 0.406 0.408 0.408 0.368 0.368 0.368 0.429 0.429 0.429 0.429
Final validation loss 0.599 0.599 0.599 0.599 0.599 0.599 0.599 0.599 0.599 0.599
Max CPU memory per MPI task [GB] 3.243 3.240 3.245 3.798 3.791 3.794 4.814 4.808 4.805 4.806
MAX GPU memory per MPI task[GB] 10.721 10.721 10.721 11.528 11.528 11.528 11.274 11.274 11.274 11.274
Node ID jwb1159 jwb0031 jwb0088 jwb1067 jwb0245 jwb1188 jwb0281 jwb0350 jwb0288 jwb0858
Max. GPU power [W] 240.240 271.540 239.380 239.120 272.980 276.280 278.930 267.750 263.320 252.970
Avg. GPU power [W] 78.350 86.460 70.240 87.320 97.170 92.100 112.140 114.730 117.610 108.910
GPU energy consumption [Wh] 20.261 24.665 19.273 14.444 15.624 15.684 12.544 13.035 13.303 12.981
Total IO time 390.333 380.952 379.683 38.688 385.153 386.987 396.006 398.073 402.729 39.226

Table 11: AP2 JUWELS Booster training benchmark

Experiment number 1 2 3 4 5 6 7 8 9
Job ID 7458947 7459169 7459325 7457780 7458081 7458327 7451732 7452415 7452841
#Nodes 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 2 2 2 4 4 4
#MPI tasks 1 1 1 1 1 1 1 1 1
#CPUs per task 48 48 48 48 48 48 48 48 48
Total runtime 1,129.246 1,176.583 1,171.852 906.262 842.249 832.631 583.324 566.216 642.518
Total training time 1,095.736 1,136.824 1,137.338 861.277 799.024 794.623 532.549 519.437 598.011
Training time for epoch 1,045.277 1,086.074 1,086.936 809.802 750.927 746.521 485.883 473.739 552.295
Avg. training time per batch 0.102 0.102 0.102 0.157 0.157 0.156 0.211 0.209 0.209
Final training loss 0.401 0.401 0.401 0.405 0.405 0.405 0.418 0.417 0.418
Final validation loss 0.600 0.600 0.600 0.599 0.599 0.599 0.600 0.600 0.600
Max CPU memory per MPI task [GB] 2.705 2.711 2.713 3.217 3.229 3.208 4.116 4.118 4.116
MAX GPU memory per MPI task[GB] 10.989 10.989 10.989 11.501 11.501 11.501 11.643 11.643 11.643
Node ID jwc09n039 jwc09n177 jwc09n177 jwc09n039 jwc09n135 jwc09n135 jwc09n180 jwc09n180 jwc09n180
Max. GPU power [W] 234.20 232.26 242.08 263.34 269.64 262.91 242.57 254.74 251.41
Avg. GPU power [W] 66.58 69.47 70.88 101.10 93.68 101.79 113.32 120.35 131.95
GPU energy consumption [Wh] 20.27 21.94 22.39 24.19 20.79 22.47 16.76 17.37 21.92
Total IO time 31.80 31.24 31.44 32.45 31.88 32.52 34.45 33.38 33.22

Table 12: AP2 JUWELS Cluster training benchmark

6.2 AP 2

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 112

Notes i-gpu-a100 i-gpu-a100 i-gpu-a100
Experiment number 1 2 3

Job ID 2388 2389 2414
#Nodes 1 1 1
#GPUs 1 1 1

#MPI tasks 1 1 1
#CPUs per task 32 32 32
Total runtime 1,026.28 1,163.51 1,052.30

Total training time 1,002.64 1,139.48 1,019.96
Training time for epoch 948.99 1,085.77 967.20

Avg. training time per batch 0.064 0.064 0.065
Final training loss 0.408 0.408 0.407

Final validation loss 0.599 0.599 0.599
Max CPU memory per MPI task [GB] 3.847 3.849 3.854
MAX GPU memory per MPI task[GB] 10.721 10.721 10.721

Node ID ICNODE01 ICNODE01 ICNODE01
Max. GPU power [W] 606.00 595.00 611.00
Avg. GPU power [W] 536.73 525.87 549.08
Max. GPU power [VA] 642.00 630.00 646.00
Avg. GPU power [VA] 569.22 558.93 582.86

Node energy consumption [Wh] 149.49 166.45 155.57
GPU energy consumption [VAh] 158.53 176.91 165.14

Total IO time 21.71 22.71 21.03
Action [MJs] 552.2898937 697.1944424 589.328428

Table 13: AP2 E4 Intel System training benchmark.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 113

Notes a-gpu-mi100 a-gpu-mi100 a-gpu-mi100
Experiment number 1 2 3

Job ID 2375 2379 2387
#Nodes 1 1 1
#GPUs 1 1 1

#MPI tasks 1 1 1
#CPUs per task 32 32 32
Total runtime 1,394.68 1,429.90 1,423.87

Total training time 1,364.05 1,399.14 1,393.22
Training time for epoch 1,289.41 1,324.63 1,318.86

Avg. training time per batch 0.116 0.116 0.116
Final training loss 0.383 0.383 0.383

Final validation loss 0.599 0.599 0.599
Max CPU memory per MPI task [GB] 3.518 3.519 3.518
MAX GPU memory per MPI task[GB] 10.998 10.998 10.998

Node ID ACNODE02 ACNODE02 ACNODE02
Max. GPU power [W] 606.00 604.00 604.00
Avg. GPU power [W] 553.49 542.72 550.80
Max. GPU power [VA] 668.00 665.00 668.00
Avg. GPU power [VA] 602.15 594.87 602.60

Node energy consumption [Wh] 214.43 210.93 213.16
GPU energy consumption [VAh] 228.16 231.20 233.21

Total IO time 28.49 28.79 28.52
Action [MJs] 1076.608036 1085.778736 1092.656425

Table 14: AP2 E4 AMD System training benchmark.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 114

Notes
Experiments 0 1 2

Job ID 7476664 7476699 7476739
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 48 48 48
Total runtime [s] 26.903 24.736 27.342

Data loading overhead [s] 7.500 5.749 6.997
Total inference time [s] 19.403 18.987 20.345

Max CPU memory per MPI task [GB] 2.645 2.645 2.634
MAX GPU memory per MPI task[GB] 1.093 1.093 1.093

Node ID jwb0033 jwb0001 jwb0097
Max. GPU power [W] 58.060 59.090 55.910
Avg. GPU power [W] 56.440 56.210 54.560

GPU energy consumption [Wh] 0.422 0.386 0.414

Table 15: AP2 JUWELS Booster inference benchmark

Experiments 1 2 3 4 5 6 7 8 9
Job ID 7475658 7476309 7476601 7476378 7476435 7476714 7475634 7580917 7581976

#Nodes 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 2 2 2 4 4 4

#MPI Tasks 1 1 1 1 1 1 1 1 1
#CPUs per task 48 48 48 48 48 48 48 48 48
Total runtime [s] 18.850 33.124 18.953 24.951 21.797 22.120 26.927 29.074 30.365

Data loading overhead [s] 4.414 7.746 4.504 5.819 4.607 4.536 4.575 4.630 5.704
Total inference time [s] 14.436 25.378 14.450 19.132 17.190 17.583 22.352 25.232 26.371

Max CPU memory per MPI task [GB] 2.118 2.108 2.114 2.520 2.511 2.516 3.351 4.178 4.192
MAX GPU memory per MPI task[GB] 1.093 1.093 1.093 1.093 1.093 1.093 1.093 0.980 0.980

Node ID jwc09n174 jwc09n066 jwc09n174 jwc09n066 jwc09n066 jwc09n174 jwc09n174 jwc09n045 jwc09n072
Max. GPU power [W] 42.400 41.910 175.880 41.450 41.910 42.400 94.240 45.350 43.830
Avg. GPU power [W] 40.570 40.530 73.790 40.590 40.830 40.690 80.460 42.310 42.740

GPU energy consumption [Wh] 0.212 0.373 0.388 0.281 0.247 0.250 0.602 0.342 0.360

Table 16: AP2 JUWELS Cluster inference benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 115

Notes i-gpu-a100 i-gpu-a100 i-gpu-a100
Experiments 0 1 2

Job ID 2420 2421 2422
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 32 32 32
Total runtime [s] 16.686 14.795 14.749

Data loading overhead [s] 3.982 3.712 3.715
Total inference time [s] 12.704 11.082 11.034

Max CPU memory per MPI task [GB] 3.271 3.271 3.274
MAX GPU memory per MPI task[GB] 1.093 1.093 1.093

Node ID ICNODE01 ICNODE01 ICNODE01
Max. GPU power [W] 655.000 650.000 654.000
Avg. GPU power [W] 480.020 521.560 529.580
Max. GPU power [VA] 672.000 667.000 672.000
Avg. GPU power [VA] 498.14 539.36 547.50

GPU energy consumption [Wh] 2.22 2.14 2.17
GPU energy consumption [VAh] 2.31 2.22 2.24

Action [MJs] 0.1336452107 0.1141576082 0.1151995645

Table 17: AP2 E4 Intel System inference benchmark

Notes a-gpu-mi100 a-gpu-mi100 a-gpu-mi100
Experiments 0 1 2

Job ID 2423 2424
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 32 32 32
Total runtime [s] 29.029 18.723 18.751

Data loading overhead [s] 4.601 3.600 3.606
Total inference time [s] 24.428 15.123 15.145

Max CPU memory per MPI task [GB] 2.962 2.966 2.965
MAX GPU memory per MPI task[GB] 1.093 1.093 1.093

Node ID ACNODE02 ACNODE02 ACNODE02
Max. GPU power [W] 639.000 637.000 634.000
Avg. GPU power [W] 446.490 469.690 476.800
Max. GPU power [VA] 657.000 655.000 650.000
Avg. GPU power [VA] 473.18 495.17 502.00

GPU energy consumption [Wh] 3.60 2.44 2.48
GPU energy consumption [VAh] 3.82 2.58 2.61

Action [MJs] 0.3762442772 0.1646501719 0.1676410924

Table 18: AP2 E4 AMD System inference benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 116

6.3 AP 3

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 117

Data location SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH
Experiment flags –nocache –nocache –nocache –dl_test –nocache –dl_test –nocache –dl_test –nocache –nocache –nocache –nocache

Experiment number 0 1 2 0 1 2 0 1 2 0 1 2
Job ID 6741790 6741813 6741825 6741726 6741727 6741789 6746363 6746364 6746365 6746376 6746377 6746378

#Nodes 1 1 1 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1 1 1 1 1 1 1
#CPUs per task 48 48 48 48 48 48 48 48 48 48 48 48
Total runtime [s] 1617.56 1616.99 1616.9 1199.76 1137.32 1137.8 1012.75 1012.63 1012.31 1918.86 1918.51 1919.04

Total training time [s] 1614.8 1614.84 1614.79 1195.21 1135.12 1135.14 1009.7 1009.72 1009.7 1916.53 1916.25 1916.25
Avg. training time per epoch [s] 284.2 285.2 294.2 185.2 181.6 182.4 172.4 173.4 172.6 338 333.4 333.2

Performance [GB/s] 0.22 0.22 0.22 0.29 0.31 0.31 0.35 0.35 0.35 0.18 0.18 0.18
First epoch training time [s] 295 282 307 333 325 323 180 181 179 355 347 346
Min. training time per epoch 278 281 289 148 145 147 169 170 170 333 330 330
Max. training time per epoch 295 293 307 333 325 323 180 181 179 355 347 346
Avg. training time per batch 0.06 0.06 0.06 0.04 0.04 0.04 0.03 0.03 0.03 0.07 0.07 0.07

Final training loss 0.0335 0.0366 0.0131 0.0352 0.0362 0.0092 0.041 0.0447 0.0395
Final validation loss 0.05 0.0534 0.022 0.049 0.0522 0.0206 0.0527 0.0603 0.0668

Max CPU memory per MPI task [GB] 4.47 4.44 4.46 65.4 65.4 65.45 1.8 1.8 1.8 4.46 4.49 4.43
MAX GPU memory per MPI task[GB] 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.61 0.61 0.61

Node ID (job report) jwb0065 jwb0021 jwb0033 jwb0021 jwb0033 jwb0053 jwb0193 jwb0023 jwb0962 jwb0023 jwb0193 jwb0907
Max. GPU power (job report) 113.57 124.27 103.07 131.22 136.48 132.64 65.59 62.46 80.6 139.03 139.28 140.9
Avg. GPU power (job report) 64.89 65.07 62.45 68.01 66.8 68.53 58.96 59.83 57.75 69.99 69.51 68.27

GPU energy consumption [Wh] 29.156519 29.22709425 28.04872361 22.665466 21.10360444 21.65928722 16.58659444 16.82934803 16.23913958 37.3058365 37.04323058 36.39246133

Table 19: AP3 JUWELS Booster training benchmark

Data location SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH SCRATCH
Experiment flags –nocache –nocache –nocache –dl_test –nocache –dl_test –nocache –dl_test –nocache

Experiment number 0 1 2 0 1 2 0 1 2
Job ID 6753256 6753257 6753259 6753260 6753262 6753264 6753266 6753267 6753268

#Nodes 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1 1 1 1
#CPUs per task 40 40 40 40 40 40 40 40 40
Total runtime [s] 2218.25 2218.07 2218.19 1498.14 1498.55 1498.38 1492.45 1492.31 1612.33

Total training time [s] 2215.76 2215.59 2215.62 1495.58 1495.59 1495.74 1489.69 1489.71 1609.71
Avg. training time per epoch [s] 407.2 405.6 406 279.8 280.4 280.8 283.8 268.2 286

Performance [GB/s] 0.16 0.16 0.16 0.23 0.23 0.23 0.23 0.23 0.22
First epoch training time [s] 436 432 434 425 431 433 351 288 283
Min. training time per epoch 399 397 398 242 242 241 253 258 268
Max. training time per epoch 436 432 434 425 431 433 351 288 306
Avg. training time per batch 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.06

Final training loss 0.0369 0.0402 0.0445 0.0377 0.042 0.0463
Final validation loss 0.0583 0.0578 0.056 0.0566 0.0535 0.0601

Max CPU memory per MPI task [GB] 3.59 3.56 3.54 64.45 64.48 64.44 1.83 1.79 1.79
MAX GPU memory per MPI task[GB] 0.63 0.63 0.61 0.63 0.63 0.61 0 0 0

Node ID (job report) jwc09n000 jwc09n006 jwc09n000 jwc09n006 jwc09n003 jwc09n000 jwc09n003 jwc09n000 jwc09n003
Max. GPU power (job report) 148.06 149.03 137.87 145.83 146.6 141.47 59.42 57.96 58.45
Avg. GPU power (job report) 56.53 56.83 55.71 58.73 57.62 57.09 45.99 44.93 45.87

GPU energy consumption [Wh] 34.83268681 35.01469947 34.32649025 24.4404895 23.98512528 23.7618095 19.06604875 18.62485786 20.54377142

Table 20: AP3 JUWELS Cluster training benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
1

8

Data location /data /data /data /data /data /data /data /data /data scratch_local scratch_local scratch_local
Experiment flags –nocache –nocache –nocache –dl_test –nocache –dl_test –nocache –dl_test –nocache –nocache –nocache –nocache

Experiment number 0 1 2 0 1 2 0 1 2 0 1 2
Job ID 2333 2334 2335 2336 2337 2338 2339 2340 2341 2356 2357 2358

#Nodes 1 1 1 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1 1 1 1 1 1 1
#CPUs per task 32 32 32 32 32 32 32 32 32 32 32 32
Total runtime [s] 803.23 792.08 786.48 877.62 867.62 878.27 598.2 618.75 593.23 803.71 797.69 796.13

Total training time [s] 801.82 790.48 785.06 876.21 866.21 876.83 596.75 617.31 591.8 802.19 796.16 794.58
Avg. training time per epoch [s] 160 158.2 156.8 175 173.2 175.4 119.2 123.6 118.2 160.4 159.2 158.8

Performance [GB/s] 0.44 0.44 0.45 0.4 0.4 0.4 0.59 0.57 0.59 0.44 0.44 0.44
First epoch training time [s] 164 164 162 294 292 293 119 122 118 165 164 163
Min. training time per epoch 158 156 151 145 143 146 119 122 118 158 157 157
Max. training time per epoch 164 164 162 294 292 293 120 126 119 165 164 163
Avg. training time per batch 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03

Final training loss 0.0349 0.0425 0.0404 0.0412 0.0357 0.0268 0.0318 0.0394 0.0447
Final validation loss 0.0524 0.056 0.0528 0.0577 0.0653 0.0435 0.0566 0.066 0.0677

Max CPU memory per MPI task [GB] 6.36 6.23 6.91 65.42 65.41 65.46 3.81 3.81 3.83 6.08 6.29 6.47
MAX GPU memory per MPI task[GB] 0.63 0.63 0.62 0.61 0.62 0.62 0 0 0 0.62 0.64 0.62

Node ID (job report) ICNODE01 ICNODE02 ICNODE02 ICNODE01 ICNODE02 ICNODE01 ICNODE02 ICNODE01 ICNODE02 ICNODE01 ICNODE02 ICNODE02
Max. node power [W] 623 972 969 634 937 608 687 549 690 633 773 772
Avg. node power [W] 606.058104 911.0756173 911.7794793 589.9580514 816.3465753 588.1300813 674.2429719 531.8774319 676.0080321 605.9926036 746.0534918 745.9142012

Node energy consumption [Wh] 135.2233475 200.4568819 199.1934236 143.8219403 196.7440599 143.4825018 112.0367072 91.41643361 111.3967347 135.2895321 165.3109472 164.9568536
Action [MJs] 391.0156178 571.6003933 563.9819176 454.3956405 614.5166926 453.6589567 241.2732896 203.6301059 237.9019857 391.4407793 474.7208021 472.7775595

Table 21: AP3 E4 Intel System training benchmark

Data location /data /data /data /data /data /data /data /data /data
Experiment flags –nocache –nocache –nocache –dl_test –nocache –dl_test –nocache –dl_test –nocache

Experiment number 0 1 2 0 1 2 0 1 2
Job ID 2342 2515 2344 2345 2346 2347 2348 2349 2350

#Nodes 1 1 1 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1 1 1 1
#CPUs per task 32 32 32 32 32 32 32 32 32
Total runtime [s] 2213.33 2716.87 2215.39 2227.8 1936.22 1920.46 236.54 234.48 234.24

Total training time [s] 2209.45 2713.69 2210.08 2222.51 1934.95 1919.2 235.25 233.18 232.94
Avg. training time per epoch [s] 441.8 542.6 442.2 444.4 387 383.8 47.2 46.6 46.4

Performance [GB/s] 0.16 0.13 0.16 0.16 0.18 0.18 1.49 1.5 1.5
First epoch training time [s] 697 1191 695 695 393 389 48 47 47
Min. training time per epoch 377 380 379 381 385 381 47 46 46
Max. training time per epoch 697 1191 695 695 393 389 48 47 47
Avg. training time per batch 0.08 0.09 0.08 0.08 0.07 0.07 0.01 0.01 0.01

Final training loss 0.04 0.0444 0.0372 0.0406 0.0412 0.0328
Final validation loss 0.0561 0.0586 0.0512 0.0613 0.0587 0.0498

Max CPU memory per MPI task [GB] 4.94 6.32 4.91 65.16 64.96 66.04 2.4 2.56 2.48
MAX GPU memory per MPI task[GB] 0.77 0.77 0.75 0.76 0.75 0.75 0 0 0

Node ID (job report) ACNODE02 ACNODE02 ACNODE01 ACNODE01 ACNODE02 ACNODE01 ACNODE01 ACNODE01 ACNODE01
Max. node power [W] 690 698 689 622 653 639 649 686 639
Avg. node power [W] 607.8359133 513.3514019 601.1093943 504.6666667 565.035409 607.3316327 610.8622449 610.5606061 607.3316327

Node energy consumption [Wh] 373.7059617 387.4191731 369.9143725 312.3045556 303.8980166 323.9878076 40.13704317 39.76784747 39.5170449
Rest time [s] 3.88 3.18 5.31 5.29 1.27 1.26 1.29 1.3 1.3
Action [MJs] 2977.684618 3789.243104 2950.216566 2504.70752 2118.288304 2239.94025 34.17845829 33.56915355 33.32330135

Table 22: AP3 E4 AMD System training benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
1

9

Experiments 0 1 2
Job ID 6750557 6750558 6750559

#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 48 48 48
Total runtime [s] 44.58 44.62 44.5

Data loading overhead [s] 1.12 1.13 1.04
Total inference time [s] 42.25 42.27 42.25

Performance [GB/s] 1.66 1.66 1.66
Max CPU memory per MPI task [GB] 3.78 3.77 3.77
MAX GPU memory per MPI task[GB] 0.3 0.3 0.3

Table 23: AP3 JUWELS Booster inference benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
2

0

Experiments 0 1 2
Job ID 6753236 6753241 6753243

#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 40 40 40
Total runtime [s] 44.3 44.63 44.24

Data loading overhead [s] 1.08 1.44 1.01
Total inference time [s] 42.05 42.04 42.05

Performance [GB/s] 1.66 1.67 1.66
Max CPU memory per MPI task [GB] 2.9 2.9 2.92
MAX GPU memory per MPI task[GB] 0.3 0.3 0.3

Table 24: AP3 JUWELS Cluster inference benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
2

1

Experiments 0 1 2
Job ID 1674 1675 1676

#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 32 32 32
Total runtime [s] 34.36 30.99 28.41

Data loading overhead [s] 7.56 1.27 0.79
Total inference time [s] 25.62 28.83 26.91

Performance [GB/s] 2.73 2.43 2.6
Max CPU memory per MPI task [GB] 3.8 3.81 3.8
MAX GPU memory per MPI task[GB] 0.31 0.31 0.31

Table 25: AP3 E4 Intel System inference benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
2

2

Experiments 0 1 2
Job ID 1677 1678 1679

#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 32 32 32
Total runtime [s] 15.18 15.25 15.49

Data loading overhead [s] 0.63 0.61 0.66
Total inference time [s] 13.15 13.24 13.69

Performance [GB/s] 5.32 5.29 5.11
Max CPU memory per MPI task [GB] 3.29 3.33 3.3
MAX GPU memory per MPI task[GB] 0.33 0.33 0.33

Table 26: AP3 E4 AMD System inference benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
2

3

Experiment number Booster-SCRATCH Booster-SCRATCH Booster-SCRATCH Booster-CSCRATCH Booster-CSCRATCH Booster-CSCRATCH
Job ID 6748650 6748654 6748658 6752412 6752591 6752592

#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1
#CPUs 1 1 1 1 1 1

Loading data time 3,141.000 3,112.000 3,033.000 17433 16785 17,000.000
Total training time [s] 75.000 73.000 74.000 90.000 75.000 763.000

Total runtime [s] 3,305.000 3,260.000 3,158.000 17680 17010 17,914.000
Total training time 3,216.000 3,185.000 3,107.000 17523 16860 17,763.000

Avg. training time per epoch [s] 1,072.000 1,061.000 1,035.000 5841 5620 5,921.000
First epoch training time [s] 1,159.000 1,060.200 1,020.000 6238 5582 6,245.000
Min. training time per epoch 1,023.000 1,033.000 1,020.000 5618 5653 5,713.000
Max. training time per epoch 1,159.000 1,092.000 1,044.000 6238 5624 6,245.000

Avg. training time per iteration 5.60E-01 5.50E-01 5.40E-01 3.08 2.97 3.10E+00
Final training loss 4.90E-05 1.10E-05 1.30E-06 1.50E-05 3.50E-06 2.40E-06

Final validation loss 2.38E-06 5.00E-06 3.40E-07 3.20E-07 2.10E-06 9.60E-06
Saving model time 0.250 0.130 0.050 0.04 0.04 0.040
Max. GPU power 94.13 98.21 100.38 124.90 113.10 101.70
Avg. GPU Power 60.32 65.10 71.12 58.53 61.20 56.10

GPU Energy consumption [Wh] 55.37711111 58.95166667 62.38804444 287.4473333 289.17 279.1598333

Table 27: AP4 JUWELS Booster training benchmark

6.4 AP 4

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 124

Experiment number SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH
Job ID 6754748 6754749 6754750 6762119 6762120 6762121

#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1
#CPUs 1 1 1 1 1 1

Loading data time 7,594.000 7,731.000 7,580.000 20,005.000 19,999.000 19,680.000
Total training time [s] 84.000 98.000 84.000 81.000 82.000 80.000

Total runtime 7,818.000 7,967.000 7,814.000 20,314.000 20,308.000 19,971.000
Total training time 7,678.000 7,829.000 7,664.000 20,086.000 20,081.000 19,760.000

Avg. training time per epoch 2,559.300 2,609.000 2,554.000 6,695.333 6,693.667 6,586.667
First epoch training time 2,559.000 2,689.000 2,559.000 6,712.000 6,685.000 6,585.000

Min. training time per epoch 2,430.000 2,409.000 2,455.000 6,668.000 6,685.000 6,585.000
Max. training time per epoch 2,689.000 2,731.000 2,649.000 6,712.000 6,698.000 6,588.000

Avg. training time per iteration 1.30E+00 1.33E+00 1.30E+00 3.54E+00 3.54E+00 3.48E+00
Final training loss 3.50E-06 3.40E-06 3.46E-06 1.60E-06 4.90E-06 9.30E-06

Final validation loss 2.00E-04 1.40E-06 1.18E-06 6.70E-06 4.30E-04 3.80E-06
Saving model time 0.830 0.220 0.750 0.030 0.070 0.100

Table 28: AP4 JUWELS Cluster training benchmark

Experiment number 1 2 3
Job ID 2384 2385 2386

#Nodes 1 1 1
#GPUs 1 1 1

#MPI tasks 1 1 1
#CPUs 16 16 16

Loading data time 8,686.000 6,794.000 6,582.000
Total training time [s] 68.000 68.000 59.000

Total runtime 8914 7,018.000 6,754.000
Total training time 8,754.000 6,862.000 6,641.000

Avg. training time per epoch 2,918.000 2,287.333 2,213.667
First epoch training time 3,215.000 2,240.000 2,207.000

Min. training time per epoch 2,769.000 2,240.000 2,207.000
Max. training time per epoch 3,215.000 2,348.000 2,237.000

Avg. training time per iteration 1.50E+00 1.20E+00 1.16E+00
Final training loss 3.80E-05 4.20E-06 2.40E-06

Final validation loss 4.30E-06 1.50E-06 8.90E-06
Saving model time 0.110 0.120 0.030

Table 29: AP4 E4 Intel System training benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 125

6.5 AP 5

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 126

Experiment number 1 2 3 4 5 6
Data location SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH

Job ID 7416227 7416228 7415230 7416237 7416238 7416242
#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1
#CPUs 48 48 48 48 48 48

Loading data time [s] 1,945.4 1,960.5 1,941.1 2,318.2 2,400.4 2,403.9
Total runtime [s] 2,913.7 2,881.4 2,932.2 2,822.1 2,845.8 2,819.7

Total training time [s] 2,882.4 2,857.4 2,906.6 2,773.2 2,805.8 2,778.0
Avg. training time per epoch [s] 576.48 571.47 581.32 554.63 561.16 555.61

Data throughput [MB/s] 505.38 507.09 501.79 520.24 520.23 522.23
First epoch training time [s] 616 600 611 592 597 590
Min. training time per epoch 550 554 559 539 541 538
Max. training time per epoch 616 600 611 592 597 590

Avg. training time per iteration 0.250 0.244 0.248 0.241 0.243 0.240
Final training loss 1.29E-01 1.37E-01 1.36E-01 1.38E-01 1.72E-01 2.06E-01

Final validation loss 1.39E-01 1.20E-01 1.24E-01 1.20E-01 1.29E-01 1.29E-01
Saving model time 7.48 6.08 5.78 5.76 5.86 5.63

Node ID jwb0117 jwb0129 jwb0149 jwb0097 jwb0021 jwb0117
Max CPU memory per MPI task [GB] 87,66 89.24 83.04 84.26 85.97 84.59
MAX GPU memory per MPI task[GB] 2,97 2,90 2,97 2.93 3.01 3.00

Max. GPU power 325.00 329.70 298.40 322.00 318.20 322.60
Avg. GPU power [W] 106.30 107.50 97.10 102.80 105.40 106.20

GPU energy consumption 86.74 86.43 79.23 80.29 84.32 83.26

Table 30: AP5 JUWELS Booster training benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
2

7

Experiment number 1 2 3 4 5 6
Data location SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH

Job ID 7416195 7416225 7417653 7416231 7416233 7416236
#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI tasks 1 1 1 1 1 1
#CPUs 48 48 48 48 48 48

Loading data time [s] 3,627.2 3,575.3 3,568.7 3,719.2 3,687.8 3,623.7
Total runtime [s] 5,363.8 5,343.5 5,368.3 5,362.2 5,282.4 5,274.1

Total training time [s] 5,299.6 5,280.9 5,300.3 5,308.9 5,221.9 5,205.0
Avg. training time per epoch [s] 1,059.92 1,056.18 1,060.05 1,061.78 1,044.37 1,041.00

Performance [GB/s] 272.73 272.08 271.54 272.20 275.21 277.71
First epoch training time [s] 1121 1111 1112 1112 1091 1097
Min. training time per epoch 1036 1022 1034 1030 1016 1016
Max. training time per epoch 1121 1111 1112 1112 1091 1097
Avg. training time per batch 0.456 0.452 0.452 0.452 0.443 0.446

Final training loss 1.34E-01 1.34E-01 1.35E-01 1.51E-01 1.32E-01 1.53E-01
Final validation loss 1.24E-01 1.28E-01 1.24E-01 1.20E-01 1.18E-01 1.33E-01
Saving model time 11.44 12.31 12.31 12.39 12.33 11.55

Max CPU memory per MPI task [GB] 85.91 82.07 83.64 81,73 84.33 84.83
MAX GPU memory per MPI task[GB] 3.21 3.14 3.16 3.19 3.32 3.29

Node ID jwc09n024 jwc09n024 jwc09n024 jwc09n000 jwc09n024 jwc09n027
Max. GPU power [W] 300.40 303.10 304.70 313.20 303.30 302.40
Avg. GPU power [W] 87.70 86.90 87.70 86.00 86.50 92.10

GPU energy consumption [Wh] 129.53 130.87 132.06 129.00 128.71 136.12

Table 31: AP5 JUWELS Cluster training benchmark

M
a
e
lstro

m
2

0
2

2

D
3

.6
R

e
p
o
rt

o
n

h
a
rd

w
a
re

p
e
rfo

rm
a
n
ce

b
e
n
ch

m
a
rk

in
g

fo
r

M
L

so
lu

tio
n
s

fro
m

D
1

.3
o
n

a
n
u
m

b
e
r

o
f

h
a
rd

w
a
re

co
n
fi
g
u
ra

tio
n
s

1
2

8

Experiment number 1 2 3
Data location /data /data /data

Job ID 2087 2088 2092
#Nodes 1 1 1
#GPUs 1 1 1

#MPI tasks 1 1 1
#CPUs 48 48 48

Loading data time [s] 2,603.3 3,037.9 2,613.4
Total runtime [s] 3,017.2 3,415.5 3,098.0

Total training time [s] 2,993.9 3,377.2 3,075.5
Avg. training time per epoch [s] 598.78 675.44 615.10

Performance [GB/s] 481.79 429.38 470.91
First epoch training time [s] 621 702 632
Min. training time per epoch 582 651 601
Max. training time per epoch 621 702 632
Avg. training time per batch 0.252 0.285 0.257

Final training loss 1.61E-01 1.65E-01 1.43E-01
Final validation loss 1.21E-01 1.37E-01 1.23E-01
Saving model time 4.89 9.09 4.69

Max CPU memory per MPI task [GB] 84.750 84.890 84.220
MAX GPU memory per MPI task[GB] 3.16 3.30 3.21

Node ID icnode01 icnode02 icnode01
Max. GPU power [W] 1,163.00 1,252.00 1,166.00
Avg. GPU power [W] 857.05 967.53 860.92

GPU energy consumption [Wh] 722.54 922.92 743.50
Action [MJs] 7848.171677 11348.03974 8292.1068

Table 32: AP5 E4 Intel System training benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 129

Experiment number 1 2 3
Data location /data /data /data

Job ID 2089 2090 2091
#Nodes 1 1 1
#GPUs 1 1 1

#MPI tasks 1 1 1
#CPUs 48 48 48

Loading data time [s] 1,432.9 1,431.8 1,457.6
Total runtime [s] 5,003.7 4,993.5 4,990.7

Total training time [s] 4,983.5 4,968.2 4,935.4
Avg. training time per epoch [s] 996.70 993.64 987.08

Performance [GB/s] 289.90 290.65 292.19
First epoch training time [s] 1030 1029 1020
Min. training time per epoch 985 977 977
Max. training time per epoch 1030 1029 1020
Avg. training time per batch 0.419 0.418 0.415

Final training loss 1.29E-01 2.04E-01 1.21E-01
Final validation loss 1.19E-01 1.20E-01 1.18E-01
Saving model time 4.70 9.53 4.65

Max CPU memory per MPI task [GB] 90.750 91.030 90.390
MAX GPU memory per MPI task[GB] 2.72 2.67 2.63

Node ID acnode02 acnode01 acnode01
Max. GPU power [W] 866.00 852.00 864.00
Avg. GPU power [W] 735.06 732.18 731.67

GPU energy consumption [Wh] 1,027.45 1,019.77 1,018.24
Action [MJs] 18,507.79 18,332.00 18,294.23

Table 33: AP5 E4 AMD System training benchmark

Experiment number 1 2 3 4 5 6
Data location SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH

Job ID 7435787 7435788 7435789 7436875 7436876 7436879
#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI Tasks 1 1 1 1 1 1
#CPUs per task 48 48 48 48 48 48
Total runtime [s] 31.20 22.47 22.18 40.13 31.92 31.77
Model loading [s] 3.85 2.87 2.92 3.81 2.71 2.91
Data loading [s] 9.41 9.20 9.26 19.75 20.02 18.78

Total inference time [s] 17.87 10.37 9.96 16.48 9.12 10.04
Performance [GB/s] 0.24 0.41 0.42 0.25 0.46 0.42

Max CPU memory per MPI task [GB] 36.05 36.09 36.08 36.09 36.08 36.1
MAX GPU memory per MPI task[GB] 5.52 5.52 5.52 5.52 5.52 5.52

Node ID jwb0097 jwb0033 jwb0053 jwb0149 jwb0149 jwb0021

Table 34: AP5 JUWELS Booster inference benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 130

Experiment number 1 2 3 4 5 6
Data location SCRATCH SCRATCH SCRATCH CSCRATCH CSCRATCH CSCRATCH

Job ID 7435754 7435780 7435786 7436871 7436874 7437653
#Nodes 1 1 1 1 1 1
#GPUs 1 1 1 1 1 1

#MPI Tasks 1 1 1 1 1 1
#CPUs per task 48 48 48 48 48 48
Total runtime [s] 65.94 56.24 50.63 57.39 56.91 56.80
Model loading [s] 6.79 7.41 7.16 7.62 7.05 7.35
Data loading [s] 43.12 33.24 27.43 32.60 34.22 32.75

Total inference time [s] 16.02 15.58 16.00 17.08 15.59 15.74
Performance [GB/s] 0.26 0.27 0.26 0.25 0.27 0.27

Max CPU memory per MPI task [GB] 35.02 35.01 35.01 35.01 35.01 35.01
MAX GPU memory per MPI task[GB] 5.61 5.61 5.61 5.61 5.61 5.61

Node ID jwc09n024 jwc09n024 jwc09n027 jwc09n003 jwc09n000 jwc09n024

Table 35: AP5 JUWELS Cluster inference benchmark

Experiment number 1 2 3
Data location /data /data /data

Job ID 2166 2167 2168
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 40 40 40
Total runtime [s] 152.02 81.42 77.36
Model loading [s] 2.99 4.52 2.77
Data loading [s] 110.75 60.61 59.15

Total inference time [s] 43.15 16.19 15.39
Performance [GB/s] 0.10 0.26 0.27

Max CPU memory per MPI task [GB] 31.71 31.7 31.91
MAX GPU memory per MPI task[GB] 5.61 5.61 5.61

Node ID icnode01 icnode02 icnode01

Table 36: AP5 E4 Intel System inference runtime.

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 131

Experiment number 1 2 3
Data location /data /data /data

Job ID 2169 2170 2171
#Nodes 1 1 1
#GPUs 1 1 1

#MPI Tasks 1 1 1
#CPUs per task 40 40 40
Total runtime [s] 68.81 70.33 68.41
Model loading [s] 2.44 3.96 2.01
Data loading [s] 51.45 51.71 51.58

Total inference time [s] 14.83 14.60 14.82
Performance [GB/s] 0.28 0.29 0.28

Max CPU memory per MPI task [GB] 31.97 31.44 31.58
MAX GPU memory per MPI task[GB] 5.27 5.27 5.27

Node ID acnode02 acnode01 acnode02

Table 37: AP5 E4 AMD System inference benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 132

Experiment number 1 2 3 4 5
Job ID 7427176 7427177 7421256 7421257 7421258
#Nodes 1 1 1 2 4
#GPUs 1 2 4 4 4
#CPUs 48 48 48 48 48
Total runtime [s] 9,496.58 12,658.78 15,031.87 9,749.03 5,278.38
Total training time [s] 9,496.58 12,658.78 15,031.87 9,749.03 5,278.38
Avg. training time per epoch [ms] 1.84 4.59 9.72 10.24 5.34
First epoch training time [ms] 2.16 3.70 8.78 8.29 8.28
Final training loss 1.94E+00 1.85E+00 1.95E+00 1.95E+00 1.94E+00
Node ID jwb1246 jwb1247 jwb1077 jwb[0985,0991] jwb[0578,0588,0608,1034]
Max. GPU power 332.95 321.57 330.04 210.03 220.54
Avg. GPU power 68.56 72.72 86.58 81.23 81.82
GPU energy consumption [Wh] 180.86 255.71 361.52 219.98 119.97

Table 38: AP6 JUWELS Booster training benchmark

Experiment number 1 2 3 4 5
Job ID 7427182 7427184 7421259 7421260 7421261

#Nodes 1 1 1 2 4
#GPUs 1 2 4 4 4
#CPUs 48 48 48 48 48

Total runtime [s] 16,266.83 17,029.43 18,581.30 11,343.47 5,763.21
Total training time [s] 16,266.83 17,029.43 18,581.30 11,343.47 5,763.21

Avg. training time per epoch [ms] 3.17 6.35 12.59 13.37 6.71
First epoch training time [ms] 3.01 5.17 9.65 6.76 8.59

Final training loss 1.95E+00 1.92E+00 1.95E+00 1.95E+00 1.93E+00
Node ID jwc09n117 jwc09n096 jwc09n183 jwc09n[069,084] jwc09n[087,090,093,099]

Max. GPU power 291.17 286.18 247.71 210.03 223.31
Avg. GPU power 55.17 62.67 76.60 71.70 69.16

GPU energy consumption [Wh] 249.29 296.45 395.37 225.92 110.72

Table 39: AP6 JUWELS Cluster training benchmark

6.6 AP 6

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 133

Experiment number 1 2
Dataset ID 2 2

Job ID 2058 2140
#Nodes 1 2
#GPUs 1 2

Total runtime [s] 6,240.740 3,936.077
Total training time 6,240.740 3,936.077

Avg. training time per epoch 2,458.308 2,844.843
Final training loss 1.90E+00 1.91E+00

Node ID icnode01 icnode[01-02]
Avg. Power Consumption [W] 600.61 599.09

Avg. apparent Power [VA] 620.36 617.85
GPU energy consumption [Wh] 1,041.18 1,310.04

Action [MJs] 23,391.89 18,563.09

Table 40: AP6 E4 Intel System training benchmark

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 134

Document History

Version Author(s) Date Changes

Name
(Organisation)

dd/mm/yyyy

1.0 E4 08/05/2023 Start internal review

Internal Review History

Internal Reviewers Date Comments

Peter Dueben (ECMWF) 09/05/2023
Accepted with minor revi-
sions

Estimated Effort Contribution per Partner

Partner Effort

E4 3PM

FZJ 0.5PM

Total 3.5PM

Maelstrom
2022

D3.6 Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations 135

	Executive Summary
	Introduction
	About MAELSTROM
	Scope of this deliverable
	Objectives of this deliverable
	Work performed in this deliverable
	Computing configuration and Storage
	Deviations and counter measures

	Metrics
	Benchmarks
	AP1
	Notes
	JUWELS Booster
	JUWELS Cluster
	E4 Intel System
	E4 AMD System
	Results

	AP2
	Notes
	JUWELS Booster
	JUWELS Cluster
	E4 Intel System
	E4 AMD System
	Results

	AP3
	Notes
	JUWELS Booster
	JUWELS Cluster
	E4 Intel System
	E4 AMD System
	Results

	AP4
	Notes
	JUWELS Booster
	JUWELS Cluster
	E4 Intel System
	Results

	AP5
	Notes
	JUWELS Booster
	JUWELS Cluster
	E4 Intel System
	E4 AMD System
	Results

	AP6
	Notes
	JUWELS Booster
	JUWELS Cluster
	E4 Intel System
	Results

	Conclusion
	Appendix
	AP1
	AP2
	AP3
	AP4
	AP5
	AP6

