

MAchinE Learning for Scalable meTeoROlogy

and climate

D3.5 Performance

model for hardware

configurations

Karthick Panner Selvam & Mats Brorsson

www.maelstrom-eurohpc.eu

http://www.maelstrom-eurohpc.eu/

D3.5 Performance model for

hardware configurations

Author(s): Karthick Panner Selvam

Mats Brorsson

Dissemination Level: Public

Date: 31/03/2023

Version: 1.0

Contractual Delivery Date: 31/03/2023

Work Package/ Task: WP3/ T3.5

Document Owner: UL-SnT

Contributors: UL-SnT

Status: Final

MAELSTROM

Machine Learning for Scalable Meteorology and

Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:

ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 955513. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme and United Kingdom,
Germany, Italy, Luxembourg, Switzerland, Norway

mailto:Peter.Dueben@ecmwf.int

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 6

Contents

1 EXECUTIVE SUMMARY ..8

2 INTRODUCTION ..9

2.1 ABOUT MAELSTROM ... 9

2.2 SCOPE OF THIS DELIVERABLE ... 9
2.2.1 OBJECTIVES OF THIS DELIVERABLE ... 9
2.2.2 WORK PERFORMED IN THIS DELIVERABLE ...10
2.2.3 DEVIATIONS AND COUNTER MEASURES ..11

3 RELATED WORK ... 12

4 METHODOLOGY ... 13

4.1 DEEP LEARNING MODEL TO TVM RELAY IR ..13

4.2 NODE FEATURE GENERATOR ..14

4.3 STATIC FEATURE GENERATOR ...15

4.4 PERFORMANCE MODEL GRAPH NETWORK STRUCTURE (PMGNS) ...15

4.5 MIG PREDICTOR ..16

5 EXPERIMENTS & RESULTS ... 17

5.1 THE DIPPM DATASET ...17

5.2 ENVIRONMENT SETUP ...18

5.3 EVALUATION ..18

5.4 PREDICTION OF MIG PROFILES ...20

5.5 DIPPM USABILITY ASPECTS ...20

6 APPLICATION ON MAELSTROM APPLICATIONS... 22

7 ROADMAP OF FUTURE DEVELOPMENT... 25

8 CONCLUSION ... 26

9 REFERENCES .. 27

Figures

Figure 1: DIPPM can predict the Latency, Energy, Memory requirement, and MIG Profile for

inference on an NVIDIA A100 GPU without actually running on it. ..10

Figure 2: Overview of DIPPM Architecture..13

Figure 3: Node Feature Generator Algorithm ...14

Figure 4: Comparison of actual value with DIPPM predicted values on the test dataset. Results show

that DIPPM predictions are close to the actual predictions. ...17

Figure 5: A sample code to use DIPPM for performance prediction of VGG16 DL model developed by

PyTorch framework. ..21

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 7

Tables

Table 1: DIPPM Graph dataset distribution ...16

Table 2: Settings in GNN comparison ..17

Table 3: Comparison with different GNN algorithms and MLP with graphSAGE, we trained all the

models for 10 epochs and used Mean Average Percentage Error for validation. The results indicate

that DIPPM with graphSAGE performs better than other variants. ..18

Table 4: DIPPM MIG profile prediction for seen and unseen DL model architectures.

(densenet*: seen, swin*: partially seen, convnext*: unseen). ..20

Table 5: DIPPM prediction results for AP1 ..21

Table 6:DIPPM prediction results for AP3 ...21

Table 7:DIPPM prediction results for AP4 ...21

Table 8:DIPPM prediction results for AP5 ...21

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 8

1 Executive Summary

Deep Learning (DL) has become a cornerstone in many everyday applications that we rely on.

However, ensuring the DL model uses the underlying hardware efficiently takes much effort.

Knowledge about inference characteristics can help to find the right match so that enough resources

are given to the model, but not too much.

We have developed a DL Inference Performance Predictive Model (DIPPM) that predicts a given

input DL model's inference latency, energy, and memory usage on the NVIDIA A100 GPU. We also

devised an algorithm to suggest the appropriate A100 Multi-Instance GPU profile from the output of

DIPPM.

We developed a methodology to convert DL models expressed in multiple frameworks to a

generalized graph structure used in DIPPM. It means DIPPM can parse input DL models from various

frameworks. DIPPM not only helps to find suitable hardware configurations but also helps to

perform rapid design-space exploration for the inference performance of a model.

We constructed a graph multi-regression dataset consisting of 10,508 different DL models to train

and evaluate the performance of DIPPM. As a result, we reached a resulting Mean Absolute

Percentage Error (MAPE) as low as 1.9%.

We have applied the current version of DIPPM to the four MAELSTROM applications (AP1, AP3, AP4,

and AP5). In addition, we plan to increase the DIPPM dataset to improve the accuracy and capability

to predict the performance of MAELSTROM applications.

DIPPM currently only predicts inference on the A100 Nvidia GPU. Therefore, the next step in the

project will be to develop support for multiple architectures and training, including distributed

training. This work will be reported in Deliverables 3.7 and 3.8.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 9

2 Introduction

2.1 About MAELSTROM

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke

compute system designs for optimal application performance and energy efficiency, a software

framework to optimise usability and training efficiency for machine learning at scale, and large-scale

machine learning applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of

computing systems regarding energy consumption, time-to-solution, numerical precision and

solution accuracy. Customised compute systems will be designed that are optimised for application

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware

developments, driven by general machine learning applications, toward needs of weather and

climate applications.

The MAELSTROM software framework will enable scientists to apply and compare machine learning

tools and libraries efficiently across a wide range of computer systems. A user interface will link

application developers with compute system designers, and automated benchmarking and error

detection of machine learning solutions will be performed during the development phase. Tools will

be published as open source.

The MAELSTROM machine learning applications will cover all important components of the

workflow of weather and climate predictions including the processing of observations, the

assimilation of observations to generate initial and reference conditions, model simulations, as well

as post-processing of model data and the development of forecast products. For each application,

benchmark datasets with up to 10 terabytes of data will be published online for training and

machine learning tool developments at the scale of the fastest supercomputers in the world.

MAELSTROM machine learning solutions will serve as a blueprint for a wide range of machine

learning applications on supercomputers in the future.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

Many essential tasks now rely on Deep learning models, for instance, in computer vision and natural

language processing domains [3,13]. In recent years, researchers have focused on improving the

efficiency of deep learning models to reduce the computation cost and energy consumption and

increase their throughput without losing accuracy. At the same time, hardware manufacturers like

NVIDIA have increased their computing power. For example, the NVIDIA A1001 GPU half-precision

Tensor Core can perform matrix operations at 312 TFLOPS. Deep learning models typically involve

many matrix operations, which can be computationally intensive and time-consuming. Graphics

Processing Units (GPUs) are commonly used to accelerate these computations because they can

perform many parallel computations simultaneously. However, not all deep learning models will

1 https://www.nvidia.com/en-us/data-center/a100/

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 10

fully utilize the GPU's processing power because the workload and number of matrix operations

required for a given problem domain can vary significantly. For this reason, NVIDIA created the

Multi-Instance GPU (MIG2) technology starting from the Ampere architecture; they split the single

physical GPU into multi-isolated GPU instances, so multiple applications can simultaneously run on

different partitions of the same GPU, which then can be used more efficiently.

However, determining the DL model's efficiency on a GPU is not straightforward. If we could predict

parameters such as inference latency, energy consumption, and memory usage, we would not need

to measure them on deployed models, which is tedious and costly. The predicted parameters could

also support efficient Neural Architecture Search (NAS) [5], efficient DL model design during

development, and avoid job scheduling failures in data centers. According to Gao et al. [6], most

failed deep learning jobs in data centers are due to out-of-memory errors.

In order to meet this need, we have developed a novel Deep Learning Inference Performance

Predictive Model (DIPPM) to support DL model developers in matching their models to the

underlying hardware for inference. As shown in Figure 1, DIPPM takes a deep learning model

expressed in any of the frameworks: PyTorch, PaddlePaddle, Tensorflow, or ONNX, and will predict

the latency (ms), energy (J), memory requirement (MB), and MIG profile for inference on an Nvidia

A100 GPU without running on it. Currently, the model is restricted to inference and the Nvidia A100

architecture, but we aim to relax these restrictions in future work. As far as we know, this is the first

predictive model that can take input from any of the mentioned frameworks and predict all of the

metrics above.

Figure 1: DIPPM can predict the Latency, Energy, Memory requirement, and MIG Profile for inference on an
NVIDIA A100 GPU without running on it.

2.2.2 Work performed in this deliverable

– We have developed, trained and evaluated a performance predictive model which predicts

inference latency, energy, memory, and MIG profile for A100 GPU with high accuracy.

– We have developed a methodology to convert deep learning models from various deep learning

frameworks into generalized graph structures for graph learning tasks in our performance

predictive model.

– We have devised an algorithm to suggest the MIG profile from predicted Memory for the given

input DL model.

2 https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 11

– We have created an open-sourced performance predictive model dataset containing 10,508

graphs for graph-level multi-regression problems.

– The model has been applied on the MAELSTROM applications with an analysis on the model

results.

2.2.3 Deviations and counter measures

The description of action (DOA) for the task where this deliverable D3.5 is written states:

In order to support the work in Task 3.4 and for being able to argue about the

benefits of the proposed reference system design, performance models will be

developed based on the benchmarking done in this task together with the

benchmarking done in Task 2.4. This performance model will be parametrised for

different architectural solutions with the purpose of guiding the design decisions

of Task 3.4 and to project performance results of the test hardware

configurations to large-scale compute systems. The performance model will be

published as Deliverable D3.5.

We have delivered a model but in order to reach its full potential, the model will in the coming

months be extended with increased functionality as explained in section 7.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 12

3 Related Work

Performance prediction of deep learning models on modern architecture is a rather new research

field being attended to only since a couple of years back. Bouhali et al. [2] and Lu et al. [14] have

carried out similar studies where a classical Multi-Layer Perceptron (MLP) is used to predict the

inference latency of a given input DL model. Their approach was to collect high-level DL model

features such as batch size, number of layers, and the total number of floating-point operations

(FLOPS) needed. They then fed these features into an MLP regressor as input to predict the latency

of the given model. Bai et al. [1] used the same MLP method but predicted both the latency and

memory. However, the classical MLP approach did not work very well due to the inability to capture

a detailed view of the given input DL model.

To solve the above problems, some researchers came up with a kernel additive method; they predict

each kernel operation, such as convolution, dense, and LSTM, individually and sum up all kernel

values to predict the overall performance of the DL model [8,15,18,20,22,24]. Yu et al. [23] used the

wave-scaling technique to predict the inference latency of the DL model on GPU, but this technique

requires access to a GPU in order to make the prediction.

Kaufman et al. and Dudziak et al. [9,4] used graph learning instead of MLP to predict each kernel

value. Still, they used the kernel additive method for inference latency prediction. However, this

kernel additive method did not capture the overall network topology of the model, and instead, it

will affect the accuracy of the prediction. To solve the above problem, Liu et al. [12] used a Graph

level task to generalize the entire DL model into node embeddings and predicted the inference

latency of the given DL model. However, they did not predict other parameters, such as memory

usage and energy consumption. Gao et al. [25] used the same graph-level task to predict the single

iteration time and memory consumption for deep learning training but not for inference.

Li et al. [11] tried to predict the MIG profiles on A100 GPU for the DL models. However, their

methodology is not straightforward; they used CUDA Multi-Process Service (MPS) values to predict

the MIG, So the model must run at least on the target hardware once to predict the MIG Profile.

Most of the previous research work concentrated on parsing the input DL model from only one of

the following frameworks (PyTorch, TensorFlow, PaddlePaddle, ONNX). As far as we are aware, none

of the previous performance prediction models predicted Memory usage, Latency, Energy, and MIG

profile simultaneously.

Our novel Deep Learning Inference Performance Predictive Model (DIPPM) fills a gap in previous

work. DIPPM takes a deep learning model as input from various deep learning frameworks such as

PyTorch, PaddlePaddle, TensorFlow, or ONNX and converts it to generalize graph with node

features. We used a graph neural network and MIG predictor to predict the inference latency (ms),

energy (J), memory (MB), and MIG profile for A100 GPU without running on it.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 13

4 Methodology

The architecture of DIPPM consists of five main components: Relay Parser, Node Feature Generator,

Static Feature Generator, Performance Model Graph Network Structure (PMGNS), and MIG

Predictor, as shown in Figure 2. We will explain each component individually in this section.

Figure 2: Overview of DIPPM Architecture

4.1 Deep Learning Model to TVM Relay IR

The Relay Parser takes as input a DL model expressed in one of several supported DL frameworks,

converts it to an Intermediate Representation (IR), and passes this IR into the Node Feature

Generator and the Static Feature Generator components.

Most of the previously proposed performance models are able to parse the given input DL model

from a single DL framework, not from several, as we already discussed in Section 3. To enable the

use of multiple frameworks, we used a relay, which is a high-level IR for DL model. It has been used

to compile DL models for inference in the TVM framework. We are inspired by the way they convert

the DL model from various DL frameworks into a high-level IR format and therefore used their

technique in our DIPPM architecture. It allows parsing given input DL models from various

frameworks, but we have chosen to limit ourselves to PyTorch, TensorFlow, ONNX, and

PaddlePaddle. We pass this DL IR to the subsequent components in our DIPPM architecture.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 14

4.2 Node Feature Generator

The Node Feature Generator (NFG) converts the DL IR into an Adjacency Matrix (A) and a Node

feature matrix (X) and passes this data to the PMGNS component.

The NFG takes the IR from the relay parser component. The IR is a computational data flow graph

containing more information than is needed for our performance prediction. Therefore, we filter and

pre-process the graph by post-order graph traversal to collect necessary node information. The

nodes in the IR contain useful features such as operator name, attributes, and output shape of the

operator, which after this first filtering step are converted into a suitable data format for our

performance prediction. In the subsequent step, we loop through the nodes and, for each operator

node, generate node features Fnode with a fixed length of 32, as discussed in line number 9 on the

Figure 3.

The central part of the NFG is to generate an Adjacency Matrix (A) and a Node feature

matrix (X) as expressed in Figure 3. X has the shape of [Nop, Nfeatures], where Nop is the number of

operator nodes in the IR and Nfeatures is the number of features. In order to create node features Fn

for each node, first, we need to encode the node operator name into a one hot encoding as can be

seen on Figure 3. Then extract the node attributes Fattr and output shape Fshape into vectors. Finally,

perform vector concatenation to generate Fnode for a node. We repeat this operation for each node

and create the G. From the G, we extract A, X which are passed to the main part of our model, the

Performance Model Graph Network Structure.

Figure 3: Node Feature Generator Algorithm

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 15

4.3 Static Feature Generator

The Static Feature Generator (SFG) takes the IR from the relay parser component and generates

static features Fs for a given DL model and passes them into the graph network structure.

For this experiment, we limited ourselves to five static features. First, we calculate the Fmac total

multiply-accumulate (MACs) of the given DL model. We used the TVM relay analysis API to calculate

total MACs, but it is limited to calculating MACs for the following operators (in TVM notation):

Conv2D, Conv2D transpose, dense, and batch matmul. Then we calculate the total number of

convolutions FTconv, Dense FTdense, and Relu FTrelu operators from the IR. We included batch size Fbatch

as one of the static features because it gives the ability to predict values for various batch sizes of a

given model. Finally, we concatenate all the features into a vector Fs as expressed in equation 1. The

feature set Fs is subsequently passed to the following graph network structure.

 ℱ𝑠 ← ℱmac ⊕ ℱbatch ⊕ ℱTconv ⊕ ℱTdense ⊕ ℱTrelu Eq. 1

4.4 Performance Model Graph Network Structure (PMGNS)

The PMGNS takes the node feature matrix (X), the adjacency matrix (A) from the Node Feature

Generator component, and the feature set (Fs) from the Static feature generator and predicts the

given input DL model’s memory, latency, and energy, as shown in Figure 2.

The PMGNS must be trained before prediction, as explained in section 5. The core idea of the

PMGNS is to generate the node embedding z from X and A and then to perform vector

concatenation of z with Fs. Finally, we pass the concatenated vector into a Fully Connected layer for

prediction, as shown in Figure 2. In order to generate z, we used the graphSAGE algorithm suggested

by Hamilton et al. [7], because of its inductive node embedding, which means it can generate

embedding for unseen nodes without pretraining.

GraphSAGE is a graph neural network framework that learns node embeddings in large-scale graphs

by aggregating information from the nodes and their neighbours. GraphSAGE is designed to perform

inductive learning, which means it can generalize to unseen nodes not present in the training set.

This is achieved by learning a fixed size embedding for each node in the graph that captures the

node's and its neighbours' features. During training, GraphSAGE uses a neighbourhood aggregation

scheme to iteratively sample and aggregate the features of a node's neighbours, allowing it to

capture local graph structure and generate node embeddings sensitive to each node's local

neighbourhood. When new nodes are added to the graph, GraphSAGE can use the learned

neighbourhood aggregation scheme to generate embeddings for these nodes based on their local

neighbourhood. This allows GraphSAGE to perform inductive learning, as it can generalize its node

embeddings to new nodes not present in the training set.

We already discussed that we generate node features of each node in the section 4.2. The

graphSAGE algorithm will convert node features into a node embedding z which is more amenable

for model training. The PMGNS contains three sequential graphSAGE blocks and three sequential

Fully connected (FC) blocks as shown in Figure 2. At the end of the final graphSAGE block, we get the

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 16

generalized node embedding of given X and A, which we concatenate with Fs. Then we pass the

concatenated vector into FC to predict the memory (MB), latency (ms), and energy (J).

Figure 4: MIG Profile comparison of three different DL models memory consumption on A100 GPU. We used
batch size 16 for VGG16 and Densenet121 model and batch size 8 for Swin base model.

4.5 MIG Predictor

The MIG predictor takes the memory prediction from PMGNS and predicts the appropriate MIG

profile for a given DL model, as shown in Figure 2.

As mentioned in the introduction, the Multi-instance GPU (MIG) technology allows to split an

A100 GPU into multiple instances so that multiple applications can use the GPU simultaneously. The

different instances differ in their compute capability and, most importantly, in the maximum

memory limit that is allowed to be used. The four MIG profiles of the A100 GPU that we consider

here are: 1g.5gb, 2g.10gb, 3g.20gb, and 7g.40gb, where the number in front of ”gb” denotes the

maximum amount of memory in GB that the application can use on that instance. For example, the

maximum memory limit of 1g.5gb is 5GB, and 7g.40gb is 40GB.

For a given input DL model, PMGNS predicts memory for 7g.40gb MIG profile, which is the full GPU.

We found that this prediction can be used as a pessimistic value to guide the choice of MIG profile.

Figure 4 shows manual memory consumption measurements of the exact DL model inference on

different profiles. The results show no significant difference in the memory allocation of DL in the

different MIG profiles, even though the consumption slightly increases with the capacity of the MIG

profile. Memory consumption is always the highest when running on the 7g.40gb MIG profile.

As mentioned, PMGNS predicts memory for 7g.40gb, so we claim that predicted memory will be

an upper bound. Then we perform a rule-based prediction to predict the MIG profile for the given

input DL model, as shown in equation 2. Where α has predicted memory from PMGNS.

MIG (𝛼) =

{

1g. 5gb, if 0𝑔𝑏 < 𝛼 < 5gb
2g. 10gb, if 5gb < 𝛼 < 10gb
3g. 20gb, if 10gb < 𝛼 < 20gb
7g. 40gb, if 20gb < 𝛼 < 40gb
 None, otherwise

 Eq. 2

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 17

5 Experiments & Results

5.1 The DIPPM Dataset

We constructed a graph-level multi-regression dataset containing 10,508 DL models from different

model families to train and evaluate our DIPPM. The dataset distribution is shown in Fehler!

Verweisquelle konnte nicht gefunden werden.. To the best of our knowledge, the previous

predictive performance model dataset doesn’t capture memory consumption, inference latency,

and energy consumption parameters for wide-range DL models on A100 GPU so we created our own

dataset for performance prediction of DL models.

Our dataset consists of DL models represented in graph structure, as generated by the Relay parser

described in section 4.1. We used the Nvidia Management Library3 and the CUDA toolkit4 to measure

the energy, memory, and inference latency of each given model in the dataset. For each model, we

ran the inference five times to warm up the architecture and then the inference 30 times, and then

took the arithmetic mean of those 30 values to derive the Y, where Y consists of inference latency

(ms), memory usage (MB), and energy (J) for a given DL on A100 GPU.

We used a full A100 40GB GPU, or it is equivalent to using 7g.40gb MIG profile to collect all the

metrics.

Table 1: DIPPM Graph dataset distribution

Model Family # of graphs Percentage (%)

Efficientnet 1729 16.45
Mnasnet 1001 9.53
Mobilenet 1591 15.14
Resnet 1152 10.96
Vgg 1536 14.62
Swin 547 5.21
Vit 520 4.95
Densenet 768 7.31
Visformer 768 7.31
Poolformer 896 8.53
Total 10508 100%

3 https://developer.nvidia.com/nvidia-management-library-nvml

4 https://developer.nvidia.com/cuda-toolkit

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 18

5.2 Environment setup

We used an HPC cluster at the Jülich research centre in Germany called JUWELS Booster for our

experiments5. It is equipped with 936 nodes, each with AMD EPYC 7402 processors, 2 sockets per

node, 24 cores per socket, 512 GB DDR43200 RAM and 4 NVIDIA A100 Tensor Core GPUs with 40 GB

HBM. The main software packages used in the experiments are Python 3.10, CUDA 11.7 torch

1.13.1, torch-geometric 2.2.0, torch-scatter 2.1.0, and torch-sparse 0.6.16.

Table 2: Settings in GNN comparison

Settings Value

Dataset partition Train (70%) / Validation (15%) / Test (15%)
Nr hidden layers 512
Dropout probability 0.05
Optimizer Adam
Learning rate 2.754 · 10−5
Loss function Huber

5.3 Evaluation

The Performance Model Graph Network Structure is the main component in DIPPM, and we used

the PyTorch geometric library to create our model, as shown in Fehler! Verweisquelle konnte nicht

gefunden werden.: Settings in GNN comparison. We split our constructed dataset into three parts

randomly: a training set 70%, a validation set of 15%, and a test set of 15%.

In order to validate that graphSAGE performs better than other GNN algorithms and plain MLP,

we compared graphSAGE with the following other algorithms: GAT [19], GCN [10], GIN [21], and

finally, plain MLP without GNN. Fehler! Verweisquelle konnte nicht gefunden werden. summarizes

the settings used. The learning rate was determined using a learning rate finder as suggested by

Smith [17]. The Huber loss function achieved a higher accuracy than mean square error, which is

why we chose that one.

For the initial experiment, we trained for 10 epochs and used Mean Average Percentage Error

(MAPE) as accuracy metric to validate DIPPM. A MAPE value close to zero indicates good

performance on regression prediction. Fehler! Verweisquelle konnte nicht gefunden werden.

shows that graphSAGE gives a lower MAPE value in all of training, validation, and test datasets.

Without using a GNN, MLP gives 0.366 of MAPE. With graphSAGE, MAPE is 0.160 on the test dataset

which is a significant improvement on a multi-regression problem. We conclude that graphSAGE

outperforms other GNN algorithms, and MLP because of its inductive learning, as discussed in

section 4.4.

5 https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 19

Table 3: Comparison with different GNN algorithms and MLP with graphSAGE, we trained all the models for 10
epochs and used Mean Average Percentage Error for validation. The results indicate that DIPPM with

graphSAGE performs better than other variants.

Model Training Validation Test

GAT 0.497 0.379 0.367
GCN 0.212 0.178 0.175
GIN 0.488 0.394 0.382
MLP 0.371 0.387 0.366
(Ours) GraphSAGE 0.182 0.159 0.160

After this encouraging result, we increased the number of epochs for training our DIPPM with

graphSAGE to increase the prediction accuracy. After 500 epochs, we attained a MAPE of 0.041 on

training and 0.023 on the validation dataset. In the end, we attained 1.9% MAPE on the test dataset.

Some of the DIPPM predictions on the test dataset are shown in Fehler! Verweisquelle konnte nicht

gefunden werden..

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 20

Figure 5: Comparison of actual value with DIPPM predicted values on the test dataset. Results show that DIPPM
predictions are close to the actual predictions.

5.4 Prediction of MIG Profiles

In order to verify the MIG profile prediction for a given DL model, we compared the actual MIG

profile value with the predicted MIG profile from the DIPPM, as shown in Fehler! Verweisquelle

konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.. To calculate

the actual suitable MIG profile, we divide actual memory consumption by the maximum memory

limit of the MIG profiles. The higher the value is, the more appropriate profile for the given DL

model.

For example, the predicted memory consumption for densenet121 at batch size 8 is 2865 MB.

DIPPM predicted for 7g.40GB MIG profile. The actual memory consumption for the 7g.40gb MIG

profile is 3272 MB. The actual memory consumption of 1g.5GB is 2918 MB, the percentage is 58%.

Which is higher than other MIG profiles. Results show that DIPPM correctly predicted the MIG

profile 1g.5gb for densenet121.

It is interesting to note that the densent121 models are from our test dataset, and the swin base

patch4 model is not in our DIPPM dataset, but a similar swin base model family was used to train

DIPPM. The convnext models are completely unseen to our DIPPM, but it’s still predicting the MIG

profile correctly.

Table 4: DIPPM MIG profile prediction for seen and unseen DL model architectures. (densenet*: seen, swin*:
partially seen, convnext*: unseen).

Model Batch size
Predicted Actual

MIG Mem Mem 1g. 5gb 2g.10gb 3g.20gb 7g.40gb

densenet121 8 1g.5gb 2865 3272 58% 30% 15% 8%

densenet121 32 2g.10gb 5952 6294 60% 30% 16%

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 21

swin base patch4 2 1g.5gb 2873 2944 52% 27% 14% 7%

swin base patch4 16 2g.10gb 6736 6156 59% 30% 15%

convnext base 4 1g.5gb 4771 1652 61% 31% 16% 4%

convnext base 128 7g.40gb 26439 30996 77%

5.5 DIPPM Usability aspects

DIPPM takes basic parameters like frameworks, model path, batch, and input size, and finally, device

type. As of now, we only considered A100 GPU; we are working to extend DIPPM to various

hardware platforms. With a simple python API call, DIPPM predicts memory, latency, energy, and

MIG profile for the given model, as can be seen in Figure 6.

Figure 6: A sample code to use DIPPM for performance prediction of VGG16 DL model developed by PyTorch
framework.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 22

6 Application on MAELSTROM Applications

MAELSTROM have six different applications to solve various weather and climate related problems.

First, we will explain each application and later we will discuss about DIPPM limitations and

prediction on each MASELSTOM application. More details of each application can be found in D1.26.

The objective of AP1 is to train deep learning models on TBs of training data with input grid shape of

[1, 512,512,17] to improve MET Norway’s operational short-range forecasts of temperature and

precipitation for the Nordic countries. AP1 used TensorFlow framework to train their model. They

used CNN architecture for training and prediction.

The objective of AP2 to enhance weather prediction by incorporating the Twitter information. They

used Hugging face NLP based transformer model call Deberta to train their transformer model.

The objective of AP3 to build neural network emulators to speed-up weather forecast models and

data assimilation. AP3 used TensorFlow framework to build their deep learning model.

The objective of AP4 to improve the forecast skill for global ensemble predictions as a post-

processing step by using deep neural network. AP4 used PyTorch framework and CNN based

architecture to train their model. AP4 accepts input grid size of [14, 361, 720].

The objective of AP5 to improve the spatial resolution of input atmospheric temperature by using

deep learning-based downscaling technique. AP5 used TensorFlow framework and CNN based

architecture to train their model. AP5 accepts input grid size of [96, 120, 10].

The objective of AP6 to improve predictions of power production from renewable energy sources in

order to optimise the production of renewable energy. AP6 used classical random forest regressor

model to train their model to predict the power production.

We have applied DIPPM on four of the MAELSTROM applications (AP1, AP3, AP4 and AP5). DIPPM is

limited to predict only deep learning models, so we excluded AP6 for prediction as it is not deep

learning. AP2 uses an NLP transformer model architecture and the current version of DIPPM is not

yet adapted for NLP based transformer models which is why it is excluded here. We plan to extend

DIPPM capability on predicting AP2 performance for the future.

Table 5:DIPPM prediction results for AP1

 Inference latency (ms) Memory Consumption (MB) Energy (J)

Actual values 176.6 40227 55502

DIPPM prediction 3.6 219 378

MAPE % 97.9 99.9 99.3

6 https://www.maelstrom-eurohpc.eu/content/docs/uploads/doc8.pdf

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 23

Table 6: DIPPM prediction results for AP3

 Inference latency (ms) Memory Consumption (MB) Energy (J)

Actual values 130 2135 13296
DIPPM prediction 67 3004 19564

MAPE % 48.4 40.7 47.14

Table 7: DIPPM prediction results for AP4

 Inference latency (ms) Memory Consumption (MB) Energy (J)
Actual values 4.9 2823 470

DIPPM prediction 2.7 2166 283

MAPE % 44.8 23.2 23.7

Table 8: DIPPM prediction results for AP5

 Inference latency (ms) Memory Consumption (MB) Energy (J)

Actual values 8.1 2733 1278

DIPPM prediction 18.6 2758 4107
MAPE % 129.6 0.9 221.3

Discussion:

AP1, AP4, and AP5 are based on CNN, and AP3 is based on RNN. The DIPPM dataset contains popular

CNN and vision-based transformer architectures, as discussed in section 5.1. We have not yet

included all MAELSTROM applications in the dataset because we want to avoid biased performance

predictions towards MAELSTROM applications. We, therefore, did not include the model

architectures similar to MAELSTROM application in the training dataset. We used MAPE% as

evaluating metrics. When the MAPE% are closer to zero indicates good prediction accuracy. DIPPM

predicts good accuracy on AP5 memory consumption but low accuracy on inference latency and

energy metrics, as shown in Table 8. DIPPM prediction results on AP1, AP3, and AP4 MAPE% values

are higher on latency, memory and energy metrics, which indicates DIPPM is not predicting with

reasonable accuracy, as shown in Table 5 - 7.

We assumed DIPPM could generalize four MAELSTROM applications with the current dataset. This

study on the MAELSTROM application shows that our assumption was wrong. DIPPM could not

efficiently generalize the given MAELSTROM applications with the current dataset. We plan to

include model architectures similar to MAELSTROM applications in the DIPPM dataset to improve

prediction accuracy.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 24

Planned Action

To increase the DIPPM prediction accuracy on (AP1, AP3, AP4 and AP5) and capability to predict AP2

performance.

• We plan to include the following models in the DIPPM dataset: 3D CNN models, NLP-based

transformers models, and weather and climate prediction models and models like

MAELSTROM applications.

• Increase the static feature attributes of DIPPM to incorporate more model characteristics of

the given DL model.

These changes will increase the DIPPM prediction accuracy not only for all five MALESTROM but also

improve the accuracy of generic DL models.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 25

7 Roadmap of future development

The current version of DIPPM is limited to predicting only Inference characteristics of a given deep

learning model. We plan to extend the capability for predicting Training and Distributed training

performance characteristics. In order to help Task 3.4, develop a “solution design and architecture

blueprint” for MAELSTROM applications. We plan to extend our predictive performance model on

seen and unseen hardware architectures by feeding hardware configurations as inputs to our

predictive performance model.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 26

8 Conclusion

We have developed a novel Deep Learning (DL) Inference Performance Predictive Model (DIPPM) to

predict the inference latency, energy, and memory consumption of a given input DL model on an

A100 GPU without running on it. Furthermore, we devised an algorithm to select the appropriate

MIG profile from the memory consumption predicted by DIPPM.

The model includes a methodology to convert the DL model represented in various frameworks to a

generalized graph structure for performance prediction. To our knowledge, DIPPM can help develop

an efficient DL model to utilize the underlying GPU effectively. Furthermore, we constructed a multi-

regression graph dataset containing 10,508 DL models for performance prediction. It can even be

used to evaluate other graph-based multi-regression GNN algorithms. We achieved 1.89% MAPE on

our dataset.

Finally, we have applied the current version of DIPPM to the four MAELSTROM applications (AP1,

AP3, AP4, and AP5) and analysed the prediction results. We plan to increase the DIPPM dataset to

improve accuracy and capability to predict the performance of MAELSTROM applications.

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 27

9 References

1) Bai, L., Ji, W., Li, Q., et al.: Dnnabacus: Toward accurate computational cost prediction for

deep neural networks. CoRR abs/2205.12095 (2022)

2) Bouhali, N., Ouarnoughi, H., Niar, S., et al.: Execution time modeling for cnn inference on

embedded gpus. In: Proceedings of the 2021 Drone Systems Engineering and Rapid

Simulation and Performance Evaluation: Methods and Tools Proceedings. p. 59–65. DroneSE

and RAPIDO ’21, Association for Computing Machinery, New York, NY, USA (2021)

3) Brown, T.B., Mann, B., Ryder, N., et al.: Language models are few-shot learners. In:

Proceedings of the 34th International Conference on Neural Information Processing Systems.

NIPS’20, Curran Associates Inc., Red Hook, NY, USA (2020)

4) Dudziak, L., Chau, T., Abdelfattah, M.S., et al.: Brp-nas: Prediction-based nas using gcns.

In: Proceedings of the 34th International Conference on Neural Information Processing

Systems. NIPS’20, Curran Associates Inc., Red Hook, NY, USA (2020)

5) Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. J. Mach. Learn.

Res. 20(1), 1997–2017 (mar 2021)

6) Gao, Y., Liu, Y., Zhang, H., et al.: Estimating GPU memory consumption of deep learning

models. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. pp. 1342–1352.

ESEC/FSE 2020, Association for Computing Machinery, New York, NY, USA (Nov 2020)

7) Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs.

In: Proceedings of the 31st International Conference on Neural Information Processing

Systems. p. 1025–1035. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

8) Justus, D., Brennan, J., Bonner, S., et al.: Predicting the computational cost of deep

learning models. In: 2018 IEEE International Conference on Big Data (BigData). pp. 3873–

3882. IEEE Computer Society, Los Alamitos, CA, USA (dec 2018)

9) Kaufman, S., Phothilimthana, P., Zhou, Y., et al.: A learned performance model for tensor

processing units. In: Smola, A., Dimakis, A., Stoica, I. (eds.) Proceedings of Machine Learning

and Systems. vol. 3, pp. 387–400 (2021)

10) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: International Conference on Learning Representations (ICLR) (2017)

11) Li, B., Patel, T., Samsi, S., et al.: Miso: Exploiting multi-instance gpu capability on multi-

tenant gpu clusters. In: Proceedings of the 13th Symposium on Cloud Computing. p. 173–

189. SoCC ’22, Association for Computing Machinery, New York, NY, USA (2022)

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 28

12) Liu, L., Shen, M., Gong, R., et al.: Nnlqp: A multi-platform neural network latency query

and prediction system with an evolving database. In: Proceedings of the 51st International

Conference on Parallel Processing. ICPP ’22, Association for Computing Machinery, New

York, NY, USA (2023)

13) Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: Hierarchical vision transformer using

shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

pp. 9992–10002. IEEE Computer Society, Los Alamitos, CA, USA (oct 2021)

14) Lu, Z., Rallapalli, S., Chan, K., et al.: Augur: Modeling the resource requirements of

convnets on mobile devices. IEEE Transactions on Mobile Computing 20(2), 352–365 (2021)

15) Qi, H., Sparks, E.R., Talwalkar, A.: Paleo: A performance model for deep neural networks.

In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017)

16) Roesch, J., Lyubomirsky, S., Weber, L., et al.: Relay: A new ir for machine learning

frameworks. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine

Learning and Programming Languages. p. 58–68. MAPL 2018, Association for Computing

Machinery, New York, NY, USA (2018)

17) Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV). pp. 464–472 (2017)

18) Sponner, M., Waschneck, B., Kumar, A.: Ai-driven performance modeling for ai inference
workloads. Electronics 11(15) (2022)

19) Veliˇckovi´c, P., Cucurull, G., Casanova, A., et al.: Graph Attention Networks. International

Conference on Learning Representations (2018), accepted as poster

20) Wang, C.C., Liao, Y.C., Kao, M.C., et al.: Toward accurate platform-aware performance

modeling for deep neural networks. SIGAPP Appl. Comput. Rev. 21(1), 50–61 (jul 2021)

21) Xu, K., Hu, W., Leskovec, J., et al.: How powerful are graph neural networks? In:

International Conference on Learning Representations (2019)

22) Yang, C., Li, Z., Ruan, C., et al.: PerfEstimator: A Generic and Extensible Performance

Estimator for Data Parallel DNN Training. In: 2021 IEEE/ACM International Workshop on

Cloud Intelligence (CloudIntelligence). pp. 13–18 (May 2021)

23) Yu, G.X., Gao, Y., Golikov, P., et al.: Habitat: A Runtime-Based Computational Performance

Predictor for Deep Neural Network Training. In: Proceedings of the 2021 USENIX Annual

Technical Conference (USENIX ATC’21) (2021)

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 29

24) Zhang, L.L., Han, S., Wei, J., et al.: Nn-meter: Towards accurate latency prediction of

deep-learning model inference on diverse edge devices. In: Proceedings of the 19th Annual

International Conference on Mobile Systems, Applications, and Services. p. 81–93. MobiSys

’21, Association for Computing Machinery, New York.

25) Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2021. Runtime

Performance Prediction for Deep Learning Models with Graph Neural Network. Technical

Report MSR-TR-2021-3. Microsoft. https://www.microsoft.com/en-
us/research/publication/runtime- perf

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 30

Document History

Version Author(s) Date Changes
0.1 Karthick Panner Selvam and Mats

Brorsson (UL-SnT)
20/03/2023 Initial draft

1.0 Karthick Panner Selvam and Mats
Brorsson (UL-SnT)

31/03/2023 Final version

Internal Review History

Internal Reviewers Date Comments

Thomas Nipen (MetNor) 29/03/2023 Minor comments and
suggestions provided

Saleh Ashkboos (ETH Zurich) 29/03/2023 Minor comments and
suggestions provided

Estimated Effort Contribution per Partner

Partner Effort

UL-SnT 6 PM

Total 06 PM

MAELSTROM 2021

D3.5 Performance model for hardware configurations
 31

This publication reflects the views only of the author, and the European High-Performance

Computing Joint Undertaking or Commission cannot be held responsible for any use which may be

made of the information contained therein.

	1 Executive Summary
	2 Introduction
	2.1 About MAELSTROM
	2.2 Scope of this deliverable
	2.2.1 Objectives of this deliverable
	2.2.2 Work performed in this deliverable
	2.2.3 Deviations and counter measures

	3 Related Work
	4 Methodology
	4.1 Deep Learning Model to TVM Relay IR
	4.2 Node Feature Generator
	4.3 Static Feature Generator
	4.4 Performance Model Graph Network Structure (PMGNS)
	4.5 MIG Predictor

	5 Experiments & Results
	5.1 The DIPPM Dataset
	5.2 Environment setup
	5.3 Evaluation
	5.4 Prediction of MIG Profiles
	5.5 DIPPM Usability aspects

	6 Application on MAELSTROM Applications
	7 Roadmap of future development
	8 Conclusion
	9 References

