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1 Executive Summary 

Deep Learning (DL) has become a cornerstone in many everyday applications that we rely on. 

However, ensuring the DL model uses the underlying hardware efficiently takes much effort. 

Knowledge about inference characteristics can help to find the right match so that enough resources 

are given to the model, but not too much. 

We have developed a DL Inference Performance Predictive Model (DIPPM) that predicts a given 

input DL model's inference latency, energy, and memory usage on the NVIDIA A100 GPU. We also 

devised an algorithm to suggest the appropriate A100 Multi-Instance GPU profile from the output of 

DIPPM. 

We developed a methodology to convert DL models expressed in multiple frameworks to a 

generalized graph structure used in DIPPM. It means DIPPM can parse input DL models from various 

frameworks. DIPPM not only helps to find suitable hardware configurations but also helps to 

perform rapid design-space exploration for the inference performance of a model. 

We constructed a graph multi-regression dataset consisting of 10,508 different DL models to train 

and evaluate the performance of DIPPM. As a result, we reached a resulting Mean Absolute 

Percentage Error (MAPE) as low as 1.9%. 

We have applied the current version of DIPPM to the four MAELSTROM applications (AP1, AP3, AP4, 

and AP5). In addition, we plan to increase the DIPPM dataset to improve the accuracy and capability 

to predict the performance of MAELSTROM applications. 

DIPPM currently only predicts inference on the A100 Nvidia GPU. Therefore, the next step in the 

project will be to develop support for multiple architectures and training, including distributed 

training. This work will be reported in Deliverables 3.7 and 3.8.  
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2 Introduction 

2.1 About MAELSTROM 

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and 

solution accuracy. Customised compute systems will be designed that are optimised for application 

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward needs of weather and 

climate applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with compute system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the 

workflow of weather and climate predictions including the processing of observations, the 

assimilation of observations to generate initial and reference conditions, model simulations, as well 

as post-processing of model data and the development of forecast products. For each application, 

benchmark datasets with up to 10 terabytes of data will be published online for training and 

machine learning tool developments at the scale of the fastest supercomputers in the world. 

MAELSTROM machine learning solutions will serve as a blueprint for a wide range of machine 

learning applications on supercomputers in the future. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

Many essential tasks now rely on Deep learning models, for instance, in computer vision and natural 

language processing domains [3,13]. In recent years, researchers have focused on improving the 

efficiency of deep learning models to reduce the computation cost and energy consumption and 

increase their throughput without losing accuracy. At the same time, hardware manufacturers like 

NVIDIA have increased their computing power. For example, the NVIDIA A1001 GPU half-precision 

Tensor Core can perform matrix operations at 312 TFLOPS. Deep learning models typically involve 

many matrix operations, which can be computationally intensive and time-consuming. Graphics 

Processing Units (GPUs) are commonly used to accelerate these computations because they can 

perform many parallel computations simultaneously. However, not all deep learning models will 

 
1 https://www.nvidia.com/en-us/data-center/a100/ 
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fully utilize the GPU's processing power because the workload and number of matrix operations 

required for a given problem domain can vary significantly. For this reason, NVIDIA created the 

Multi-Instance GPU (MIG2) technology starting from the Ampere architecture; they split the single 

physical GPU into multi-isolated GPU instances, so multiple applications can simultaneously run on 

different partitions of the same GPU, which then can be used more efficiently. 

However, determining the DL model's efficiency on a GPU is not straightforward. If we could predict 

parameters such as inference latency, energy consumption, and memory usage, we would not need 

to measure them on deployed models, which is tedious and costly. The predicted parameters could 

also support efficient Neural Architecture Search (NAS) [5], efficient DL model design during 

development, and avoid job scheduling failures in data centers. According to Gao et al. [6], most 

failed deep learning jobs in data centers are due to out-of-memory errors. 

In order to meet this need, we have developed a novel Deep Learning Inference Performance 

Predictive Model (DIPPM) to support DL model developers in matching their models to the 

underlying hardware for inference. As shown in Figure 1, DIPPM takes a deep learning model 

expressed in any of the frameworks: PyTorch, PaddlePaddle, Tensorflow, or ONNX, and will predict 

the latency (ms), energy (J), memory requirement (MB), and MIG profile for inference on an Nvidia 

A100 GPU without running on it. Currently, the model is restricted to inference and the Nvidia A100 

architecture, but we aim to relax these restrictions in future work. As far as we know, this is the first 

predictive model that can take input from any of the mentioned frameworks and predict all of the 

metrics above. 

 

Figure 1: DIPPM can predict the Latency, Energy, Memory requirement, and MIG Profile for inference on an 
NVIDIA A100 GPU without running on it. 

2.2.2 Work performed in this deliverable 

– We have developed, trained and evaluated a performance predictive model which predicts 

inference latency, energy, memory, and MIG profile for A100 GPU with high accuracy. 

– We have developed a methodology to convert deep learning models from various deep learning 

frameworks into generalized graph structures for graph learning tasks in our performance 

predictive model. 

– We have devised an algorithm to suggest the MIG profile from predicted Memory for the given 

input DL model. 

 
2 https://docs.nvidia.com/datacenter/tesla/mig-user-guide/ 
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– We have created an open-sourced performance predictive model dataset containing 10,508 

graphs for graph-level multi-regression problems. 

– The model has been applied on the MAELSTROM applications with an analysis on the model 

results. 

 

2.2.3 Deviations and counter measures 

The description of action (DOA) for the task where this deliverable D3.5 is written states: 

In order to support the work in Task 3.4 and for being able to argue about the 

benefits of the proposed reference system design, performance models will be 

developed based on the benchmarking done in this task together with the 

benchmarking done in Task 2.4. This performance model will be parametrised for 

different architectural solutions with the purpose of guiding the design decisions 

of Task 3.4 and to project performance results of the test hardware 

configurations to large-scale compute systems. The performance model will be 

published as Deliverable D3.5. 

We have delivered a model but in order to reach its full potential, the model will in the coming 

months be extended with increased functionality as explained in section 7. 
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3 Related Work 

Performance prediction of deep learning models on modern architecture is a rather new research 

field being attended to only since a couple of years back. Bouhali et al. [2] and Lu et al. [14] have 

carried out similar studies where a classical Multi-Layer Perceptron (MLP) is used to predict the 

inference latency of a given input DL model. Their approach was to collect high-level DL model 

features such as batch size, number of layers, and the total number of floating-point operations 

(FLOPS) needed. They then fed these features into an MLP regressor as input to predict the latency 

of the given model. Bai et al. [1] used the same MLP method but predicted both the latency and 

memory. However, the classical MLP approach did not work very well due to the inability to capture 

a detailed view of the given input DL model. 

To solve the above problems, some researchers came up with a kernel additive method; they predict 

each kernel operation, such as convolution, dense, and LSTM, individually and sum up all kernel 

values to predict the overall performance of the DL model [8,15,18,20,22,24]. Yu et al. [23] used the 

wave-scaling technique to predict the inference latency of the DL model on GPU, but this technique 

requires access to a GPU in order to make the prediction. 

Kaufman et al. and Dudziak et al. [9,4] used graph learning instead of MLP to predict each kernel 

value. Still, they used the kernel additive method for inference latency prediction. However, this 

kernel additive method did not capture the overall network topology of the model, and instead, it 

will affect the accuracy of the prediction. To solve the above problem, Liu et al. [12] used a Graph 

level task to generalize the entire DL model into node embeddings and predicted the inference 

latency of the given DL model. However, they did not predict other parameters, such as memory 

usage and energy consumption. Gao et al. [25] used the same graph-level task to predict the single 

iteration time and memory consumption for deep learning training but not for inference. 

Li et al. [11] tried to predict the MIG profiles on A100 GPU for the DL models. However, their 

methodology is not straightforward; they used CUDA Multi-Process Service (MPS) values to predict 

the MIG, So the model must run at least on the target hardware once to predict the MIG Profile. 

Most of the previous research work concentrated on parsing the input DL model from only one of 

the following frameworks (PyTorch, TensorFlow, PaddlePaddle, ONNX). As far as we are aware, none 

of the previous performance prediction models predicted Memory usage, Latency, Energy, and MIG 

profile simultaneously. 

Our novel Deep Learning Inference Performance Predictive Model (DIPPM) fills a gap in previous 

work. DIPPM takes a deep learning model as input from various deep learning frameworks such as 

PyTorch, PaddlePaddle, TensorFlow, or ONNX and converts it to generalize graph with node 

features. We used a graph neural network and MIG predictor to predict the inference latency (ms), 

energy (J), memory (MB), and MIG profile for A100 GPU without running on it. 
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4 Methodology 

The architecture of DIPPM consists of five main components: Relay Parser, Node Feature Generator, 

Static Feature Generator, Performance Model Graph Network Structure (PMGNS), and MIG 

Predictor, as shown in Figure 2. We will explain each component individually in this section. 

 

 

Figure 2: Overview of DIPPM Architecture 

4.1 Deep Learning Model to TVM Relay IR 

The Relay Parser takes as input a DL model expressed in one of several supported DL frameworks, 

converts it to an Intermediate Representation (IR), and passes this IR into the Node Feature 

Generator and the Static Feature Generator components. 

Most of the previously proposed performance models are able to parse the given input DL model 

from a single DL framework, not from several, as we already discussed in Section 3. To enable the 

use of multiple frameworks, we used a relay, which is a high-level IR for DL model. It has been used 

to compile DL models for inference in the TVM framework. We are inspired by the way they convert 

the DL model from various DL frameworks into a high-level IR format and therefore used their 

technique in our DIPPM architecture. It allows parsing given input DL models from various 

frameworks, but we have chosen to limit ourselves to PyTorch, TensorFlow, ONNX, and 

PaddlePaddle. We pass this DL IR to the subsequent components in our DIPPM architecture. 
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4.2 Node Feature Generator 

The Node Feature Generator (NFG) converts the DL IR into an Adjacency Matrix (A) and a Node 

feature matrix (X) and passes this data to the PMGNS component. 

The NFG takes the IR from the relay parser component. The IR is a computational data flow graph 

containing more information than is needed for our performance prediction. Therefore, we filter and 

pre-process the graph by post-order graph traversal to collect necessary node information. The 

nodes in the IR contain useful features such as operator name, attributes, and output shape of the 

operator, which after this first filtering step are converted into a suitable data format for our 

performance prediction. In the subsequent step, we loop through the nodes and, for each operator 

node, generate node features Fnode with a fixed length of 32, as discussed in line number 9 on the 

Figure 3. 

The central part of the NFG is to generate an Adjacency Matrix (A) and a Node feature 

matrix (X) as expressed in Figure 3. X has the shape of [Nop, Nfeatures], where Nop is the number of 

operator nodes in the IR and Nfeatures  is the number of features. In order to create node features Fn 

for each node, first, we need to encode the node operator name into a one hot encoding as can be 

seen on Figure 3. Then extract the node attributes Fattr  and output shape Fshape  into vectors. Finally, 

perform vector concatenation to generate Fnode for a node. We repeat this operation for each node 

and create the G. From the G, we extract A, X which are passed to the main part of our model, the 

Performance Model Graph Network Structure. 

 

Figure 3: Node Feature Generator Algorithm 
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4.3 Static Feature Generator 

The Static Feature Generator (SFG) takes the IR from the relay parser component and generates 

static features Fs  for a given DL model and passes them into the graph network structure. 

For this experiment, we limited ourselves to five static features. First, we calculate the Fmac total 

multiply-accumulate (MACs) of the given DL model. We used the TVM relay analysis API to calculate 

total MACs, but it is limited to calculating MACs for the following operators (in TVM notation): 

Conv2D, Conv2D transpose, dense, and batch matmul. Then we calculate the total number of 

convolutions FTconv, Dense FTdense, and Relu FTrelu operators from the IR. We included batch size Fbatch 

as one of the static features because it gives the ability to predict values for various batch sizes of a 

given model. Finally, we concatenate all the features into a vector Fs  as expressed in equation 1. The 

feature set Fs  is subsequently passed to the following graph network structure. 

 ℱ𝑠 ← ℱmac ⊕   ℱbatch ⊕ ℱTconv ⊕  ℱTdense ⊕  ℱTrelu  Eq.  1 
 

4.4 Performance Model Graph Network Structure (PMGNS) 

The PMGNS takes the node feature matrix (X), the adjacency matrix (A) from the Node Feature 

Generator component, and the feature set (Fs) from the Static feature generator and predicts the 

given input DL model’s memory, latency, and energy, as shown in Figure 2. 

The PMGNS must be trained before prediction, as explained in section 5. The core idea of the 

PMGNS is to generate the node embedding z from X and A and then to perform vector 

concatenation of z with Fs. Finally, we pass the concatenated vector into a Fully Connected layer for 

prediction, as shown in Figure 2. In order to generate z, we used the graphSAGE algorithm suggested 

by Hamilton et al. [7], because of its inductive node embedding, which means it can generate 

embedding for unseen nodes without pretraining.  

 

GraphSAGE is a graph neural network framework that learns node embeddings in large-scale graphs 

by aggregating information from the nodes and their neighbours. GraphSAGE is designed to perform 

inductive learning, which means it can generalize to unseen nodes not present in the training set. 

This is achieved by learning a fixed size embedding for each node in the graph that captures the 

node's and its neighbours' features. During training, GraphSAGE uses a neighbourhood aggregation 

scheme to iteratively sample and aggregate the features of a node's neighbours, allowing it to 

capture local graph structure and generate node embeddings sensitive to each node's local 

neighbourhood. When new nodes are added to the graph, GraphSAGE can use the learned 

neighbourhood aggregation scheme to generate embeddings for these nodes based on their local 

neighbourhood. This allows GraphSAGE to perform inductive learning, as it can generalize its node 

embeddings to new nodes not present in the training set. 

 

We already discussed that we generate node features of each node in the section 4.2. The 

graphSAGE algorithm will convert node features into a node embedding z which is more amenable 

for model training. The PMGNS contains three sequential graphSAGE blocks and three sequential 

Fully connected (FC) blocks as shown in Figure 2. At the end of the final graphSAGE block, we get the 
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generalized node embedding of given X and A, which we concatenate with Fs. Then we pass the 

concatenated vector into FC to predict the memory (MB), latency (ms), and energy (J). 

 

Figure 4: MIG Profile comparison of three different DL models memory consumption on A100 GPU. We used 
batch size 16 for VGG16 and Densenet121 model and batch size 8 for Swin base model. 

4.5 MIG Predictor 

The MIG predictor takes the memory prediction from PMGNS and predicts the appropriate MIG 

profile for a given DL model, as shown in Figure 2. 

As mentioned in the introduction, the Multi-instance GPU (MIG) technology allows to split an 

A100 GPU into multiple instances so that multiple applications can use the GPU simultaneously. The 

different instances differ in their compute capability and, most importantly, in the maximum 

memory limit that is allowed to be used. The four MIG profiles of the A100 GPU that we consider 

here are: 1g.5gb, 2g.10gb, 3g.20gb, and 7g.40gb, where the number in front of ”gb” denotes the 

maximum amount of memory in GB that the application can use on that instance. For example, the 

maximum memory limit of 1g.5gb is 5GB, and 7g.40gb is 40GB. 

For a given input DL model, PMGNS predicts memory for 7g.40gb MIG profile, which is the full GPU. 

We found that this prediction can be used as a pessimistic value to guide the choice of MIG profile. 

Figure 4 shows manual memory consumption measurements of the exact DL model inference on 

different profiles. The results show no significant difference in the memory allocation of DL in the 

different MIG profiles, even though the consumption slightly increases with the capacity of the MIG 

profile. Memory consumption is always the highest when running on the 7g.40gb MIG profile. 

As mentioned, PMGNS predicts memory for 7g.40gb, so we claim that predicted memory will be 

an upper bound. Then we perform a rule-based prediction to predict the MIG profile for the given 

input DL model, as shown in equation 2. Where α has predicted memory from PMGNS. 

 

 

MIG (𝛼) =

{
 
 

 
 
1g. 5gb,   if 0𝑔𝑏  < 𝛼 < 5gb
2g. 10gb, if 5gb  < 𝛼 < 10gb
3g. 20gb, if 10gb < 𝛼 < 20gb
7g. 40gb, if 20gb < 𝛼 < 40gb
 None, otherwise 

 Eq.  2 
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5 Experiments & Results 

 

5.1 The DIPPM Dataset 

We constructed a graph-level multi-regression dataset containing 10,508 DL models from different 

model families to train and evaluate our DIPPM. The dataset distribution is shown in Fehler! 

Verweisquelle konnte nicht gefunden werden.. To the best of our knowledge, the previous 

predictive performance model dataset doesn’t capture memory consumption, inference latency, 

and energy consumption parameters for wide-range DL models on A100 GPU so we created our own 

dataset for performance prediction of DL models. 

Our dataset consists of DL models represented in graph structure, as generated by the Relay parser 

described in section 4.1. We used the Nvidia Management Library3 and the CUDA toolkit4 to measure 

the energy, memory, and inference latency of each given model in the dataset. For each model, we 

ran the inference five times to warm up the architecture and then the inference 30 times, and then 

took the arithmetic mean of those 30 values to derive the Y, where Y consists of inference latency 

(ms), memory usage (MB), and energy (J) for a given DL on A100 GPU. 

We used a full A100 40GB GPU, or it is equivalent to using 7g.40gb MIG profile to collect all the 

metrics. 

Table 1: DIPPM Graph dataset distribution 

Model Family # of graphs Percentage (%) 

Efficientnet 1729 16.45 
Mnasnet 1001 9.53 
Mobilenet 1591 15.14 
Resnet 1152 10.96 
Vgg 1536 14.62 
Swin 547 5.21 
Vit 520 4.95 
Densenet 768 7.31 
Visformer 768 7.31 
Poolformer 896 8.53 
Total 10508  100% 

 

 

 

 
3 https://developer.nvidia.com/nvidia-management-library-nvml 

4 https://developer.nvidia.com/cuda-toolkit 
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5.2 Environment setup 

We used an HPC cluster at the Jülich research centre in Germany called JUWELS Booster for our 

experiments5. It is equipped with 936 nodes, each with AMD EPYC 7402 processors, 2 sockets per 

node, 24 cores per socket, 512 GB DDR43200 RAM and 4 NVIDIA A100 Tensor Core GPUs with 40 GB 

HBM. The main software packages used in the experiments are Python 3.10, CUDA 11.7 torch 

1.13.1, torch-geometric 2.2.0, torch-scatter 2.1.0, and torch-sparse 0.6.16. 

 

Table 2: Settings in GNN comparison 

Settings Value 

Dataset partition Train (70%) / Validation (15%) / Test (15%) 
Nr hidden layers 512 
Dropout probability 0.05 
Optimizer Adam 
Learning rate 2.754 · 10−5 
Loss function Huber 

 

5.3 Evaluation 

The Performance Model Graph Network Structure is the main component in DIPPM, and we used 

the PyTorch geometric library to create our model, as shown in Fehler! Verweisquelle konnte nicht 

gefunden werden.: Settings in GNN comparison. We split our constructed dataset into three parts 

randomly: a training set 70%, a validation set of 15%, and a test set of 15%. 

In order to validate that graphSAGE performs better than other GNN algorithms and plain MLP, 

we compared graphSAGE with the following other algorithms: GAT [19], GCN [10], GIN [21], and 

finally, plain MLP without GNN. Fehler! Verweisquelle konnte nicht gefunden werden. summarizes 

the settings used. The learning rate was determined using a learning rate finder as suggested by 

Smith [17]. The Huber loss function achieved a higher accuracy than mean square error, which is 

why we chose that one. 

For the initial experiment, we trained for 10 epochs and used Mean Average Percentage Error 

(MAPE) as accuracy metric to validate DIPPM. A MAPE value close to zero indicates good 

performance on regression prediction. Fehler! Verweisquelle konnte nicht gefunden werden. 

shows that graphSAGE gives a lower MAPE value in all of training, validation, and test datasets. 

Without using a GNN, MLP gives 0.366 of MAPE. With graphSAGE, MAPE is 0.160 on the test dataset 

which is a significant improvement on a multi-regression problem. We conclude that graphSAGE 

outperforms other GNN algorithms, and MLP because of its inductive learning, as discussed in 

section  4.4. 

 

 

 

 
5 https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html 
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Table 3: Comparison with different GNN algorithms and MLP with graphSAGE, we trained all the models for 10 
epochs and used Mean Average Percentage Error for validation. The results indicate that DIPPM with 

graphSAGE performs better than other variants. 

Model Training Validation Test 

GAT 0.497 0.379 0.367 
GCN 0.212 0.178 0.175 
GIN 0.488 0.394 0.382 
MLP 0.371 0.387 0.366 
(Ours) GraphSAGE 0.182 0.159 0.160 

 

After this encouraging result, we increased the number of epochs for training our DIPPM with 

graphSAGE to increase the prediction accuracy. After 500 epochs, we attained a MAPE of 0.041 on 

training and 0.023 on the validation dataset. In the end, we attained 1.9% MAPE on the test dataset. 

Some of the DIPPM predictions on the test dataset are shown in Fehler! Verweisquelle konnte nicht 

gefunden werden.. 
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Figure 5: Comparison of actual value with DIPPM predicted values on the test dataset. Results show that DIPPM 
predictions are close to the actual predictions. 

 

 

 

5.4 Prediction of MIG Profiles 

In order to verify the MIG profile prediction for a given DL model, we compared the actual MIG 

profile value with the predicted MIG profile from the DIPPM, as shown in Fehler! Verweisquelle 

konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.. To calculate 

the actual suitable MIG profile, we divide actual memory consumption by the maximum memory 

limit of the MIG profiles. The higher the value is, the more appropriate profile for the given DL 

model.  

For example, the predicted memory consumption for densenet121 at batch size 8 is 2865 MB. 

DIPPM predicted for 7g.40GB MIG profile. The actual memory consumption for the 7g.40gb MIG 

profile is 3272 MB. The actual memory consumption of 1g.5GB is 2918 MB, the percentage is 58%. 

Which is higher than other MIG profiles. Results show that DIPPM correctly predicted the MIG 

profile 1g.5gb for densenet121. 

It is interesting to note that the densent121 models are from our test dataset, and the swin base 

patch4 model is not in our DIPPM dataset, but a similar swin base model family was used to train 

DIPPM. The convnext models are completely unseen to our DIPPM, but it’s still predicting the MIG 

profile correctly. 

Table 4: DIPPM MIG profile prediction for seen and unseen DL model architectures. (densenet*: seen, swin*: 
partially seen, convnext*: unseen). 

Model Batch size 
Predicted Actual 

MIG Mem Mem 1g. 5gb 2g.10gb 3g.20gb 7g.40gb 

densenet121 8 1g.5gb 2865 3272 58% 30% 15% 8% 

densenet121 32 2g.10gb 5952 6294  60% 30% 16% 
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swin base patch4 2 1g.5gb 2873 2944 52% 27% 14% 7% 

swin base patch4 16 2g.10gb 6736 6156  59% 30% 15% 

convnext base 4 1g.5gb 4771 1652 61% 31% 16% 4% 

convnext base 128 7g.40gb 26439 30996    77% 

 

 

5.5 DIPPM Usability aspects 

DIPPM takes basic parameters like frameworks, model path, batch, and input size, and finally, device 

type. As of now, we only considered A100 GPU; we are working to extend DIPPM to various 

hardware platforms. With a simple python API call, DIPPM predicts memory, latency, energy, and 

MIG profile for the given model, as can be seen in Figure 6. 

 

Figure 6: A sample code to use DIPPM for performance prediction of VGG16 DL model developed by PyTorch 
framework. 
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6 Application on MAELSTROM Applications 

MAELSTROM have six different applications to solve various weather and climate related problems. 

First, we will explain each application and later we will discuss about DIPPM limitations and  

prediction on each MASELSTOM application. More details of each application can be found in D1.26. 

The objective of AP1 is to train deep learning models on TBs of training data with input grid shape of 

[1, 512,512,17] to improve MET Norway’s operational short-range forecasts of temperature and 

precipitation for the Nordic countries. AP1 used TensorFlow framework to train their model. They 

used CNN architecture for training and prediction. 

The objective of AP2  to enhance weather prediction by incorporating the Twitter information. They 

used Hugging face NLP based transformer model call Deberta to train their transformer model. 

The objective of AP3 to build neural network emulators to speed-up weather forecast models and 

data assimilation. AP3 used TensorFlow framework to build their deep learning model. 

The objective of AP4 to improve the forecast skill for global ensemble predictions as a post-

processing step by using deep neural network. AP4 used PyTorch framework and CNN based 

architecture to train their model. AP4 accepts input grid size of [14, 361, 720]. 

The objective of AP5 to improve the spatial resolution of input atmospheric temperature by using 

deep learning-based downscaling technique. AP5 used TensorFlow framework and CNN based 

architecture to train their model. AP5 accepts input grid size of [96, 120, 10]. 

The objective of AP6 to improve predictions of power production from renewable energy sources in 

order to optimise the production of renewable energy. AP6 used classical random forest regressor  

model to train their model to predict the power production. 

We have applied DIPPM on four of the MAELSTROM applications (AP1, AP3, AP4 and AP5). DIPPM is 

limited to predict only deep learning models, so we excluded AP6 for prediction as it is not deep 

learning. AP2 uses an NLP transformer model architecture and the current version of DIPPM is not 

yet adapted for NLP based transformer models which is why it is excluded here. We plan to extend 

DIPPM capability on predicting AP2 performance for the future. 

Table 5:DIPPM prediction results for AP1 

 Inference latency (ms) Memory Consumption (MB) Energy (J) 

Actual values 176.6 40227 55502 

DIPPM prediction 3.6 219 378 

MAPE % 97.9 99.9 99.3 
 

 

 
6 https://www.maelstrom-eurohpc.eu/content/docs/uploads/doc8.pdf 
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Table 6: DIPPM prediction results for AP3 

 Inference latency (ms) Memory Consumption (MB) Energy (J) 

Actual values 130 2135 13296 
DIPPM prediction 67 3004 19564 

MAPE % 48.4 40.7 47.14 

 

Table 7: DIPPM prediction results for AP4 

 Inference latency (ms) Memory Consumption (MB) Energy (J) 
Actual values 4.9 2823 470 

DIPPM prediction 2.7 2166 283 

MAPE % 44.8 23.2 23.7 

 

Table 8: DIPPM prediction results for AP5 

 Inference latency (ms) Memory Consumption (MB) Energy (J) 

Actual values 8.1 2733 1278 

DIPPM prediction 18.6 2758 4107 
MAPE % 129.6 0.9 221.3 

 

 

Discussion: 

AP1, AP4, and AP5 are based on CNN, and AP3 is based on RNN. The DIPPM dataset contains popular 

CNN and vision-based transformer architectures, as discussed in section 5.1. We have not yet 

included all MAELSTROM applications in the dataset because we want to avoid biased performance 

predictions towards MAELSTROM applications. We, therefore, did not include the model 

architectures similar to MAELSTROM application in the training dataset. We used MAPE% as 

evaluating metrics. When the MAPE% are closer to zero indicates good prediction accuracy. DIPPM 

predicts good accuracy on AP5 memory consumption but low accuracy on inference latency and 

energy metrics, as shown in Table 8. DIPPM prediction results on AP1, AP3, and AP4 MAPE% values 

are higher on latency, memory and energy metrics, which indicates DIPPM is not predicting with 

reasonable accuracy, as shown in Table 5 - 7. 

We assumed DIPPM could generalize four MAELSTROM applications with the current dataset. This 

study on the MAELSTROM application shows that our assumption was wrong. DIPPM could not 

efficiently generalize the given MAELSTROM applications with the current dataset. We plan to 

include model architectures similar to MAELSTROM applications in the DIPPM dataset to improve 

prediction accuracy. 
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Planned Action 

To increase the DIPPM prediction accuracy on (AP1, AP3, AP4 and AP5) and capability to predict AP2 

performance. 

• We plan to include the following models in the DIPPM dataset: 3D CNN models, NLP-based 

transformers models, and weather and climate prediction models and models like 

MAELSTROM applications. 

• Increase the static feature attributes of DIPPM to incorporate more model characteristics of 

the given DL model. 

These changes will increase the DIPPM prediction accuracy not only for all five MALESTROM but also 

improve the accuracy of generic DL models. 
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7 Roadmap of future development 

The current version of DIPPM is limited to predicting only Inference characteristics of a given deep 

learning model. We plan to extend the capability for predicting Training and Distributed training 

performance characteristics. In order to help Task 3.4, develop a “solution design and architecture 

blueprint” for MAELSTROM applications. We plan to extend our predictive performance model on 

seen and unseen hardware architectures by feeding hardware configurations as inputs to our 

predictive performance model. 
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8 Conclusion 

We have developed a novel Deep Learning (DL) Inference Performance Predictive Model (DIPPM) to 

predict the inference latency, energy, and memory consumption of a given input DL model on an 

A100 GPU without running on it. Furthermore, we devised an algorithm to select the appropriate 

MIG profile from the memory consumption predicted by DIPPM. 

The model includes a methodology to convert the DL model represented in various frameworks to a 

generalized graph structure for performance prediction. To our knowledge, DIPPM can help develop 

an efficient DL model to utilize the underlying GPU effectively. Furthermore, we constructed a multi-

regression graph dataset containing 10,508 DL models for performance prediction. It can even be 

used to evaluate other graph-based multi-regression GNN algorithms. We achieved 1.89% MAPE on 

our dataset. 

Finally, we have applied the current version of DIPPM to the four MAELSTROM applications (AP1, 

AP3, AP4, and AP5) and analysed the prediction results. We plan to increase the DIPPM dataset to 

improve accuracy and capability to predict the performance of MAELSTROM applications. 
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