
MAchinE Learning for Scalable meTeoROlogy

and climate

Report on software performance

benchmarking for ML solutions

from deliverable D1.3

Nikoli Dryden, Tal Ben-Nun, Saleh Ashkboos, Fabian

Emmerich, Jannik Jauch

www.maelstrom-eurohpc.eu

http://www.maelstrom-eurohpc.eu

D2.3 Report on software performance

benchmarking for ML solutions from

deliverable D1.3

Author(s): Nikoli Dryden (ETH), Tal Ben-Nun (ETH),

Saleh Ashkboos (ETH), Fabian Emmerich (4cast),

Jannik Jauch (4cast)

Dissemination Level: Public

Date: 31/12/2022

Version: 1.0

Contractual Delivery Date: 31/12/2022

Work Package/ Task: WP2/ T2.2 T2.3 T2.4 T2.5 T2.6

Document Owner: ETH

Contributors: 4cast, ECMWF

Status: Final

MAELSTROM

Machine Learning for Scalable Meteorology and

Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:

ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 955513. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme and United Kingdom, Germany,
Italy, Luxembourg, Switzerland, Norway

mailto:Peter.Dueben@ecmwf.int

MAELSTROM 2022

Contents

1 EXECUTIVE SUMMARY 6

2 INTRODUCTION 7

2.1 About MAELSTROM 7

2.2 Scope of this deliverable 7

2.2.1 OBJECTIVES OF THIS DELIVERABLE 7

2.2.2 WORK PERFORMED IN THIS DELIVERABLE 7

2.2.3 DEVIATIONS AND COUNTER MEASURES 7

3 BENCHMARKING INFRASTRUCTURE BY WORK PACKAGE TASKS 8

3.1 Workflow Platform (Task 2.2) 8

3.2 Benchmarking Tools (Task 2.3) 8

3.3 User Interface (Task 2.4) 8

3.4 Data Input/Output Acceleration (Task 2.5) 8

3.5 Deployment and Infrastructure (Task 2.6) 8

4 SOFTWARE BENCHMARKING RESULTS 9

4.1 Application 1 9

4.2 Application 2 9

4.3 Application 3 9

4.4 Application 4 9

4.5 Application 5 9

4.6 Application 6 9

5 CONCLUSION 10

6 REFERENCES 11

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 4

MAELSTROM 2022

Figures

Figure 1: Usage of MLflow with the Mantik API 11

Figure 2: Example of an application with the Mantik Compute Backend using the Mantik CLI 11

Figure 3: Secured MLflow GUI 12

Figure 4: Landing page of the Mantik web platform 14

Figure 5: Overview of projects hosted on the platform 15

Figure 6: View of a project 15

Figure 7: Example PyTorch training loop with added timing 18

Tables

Table 1: Benchmarking results for Application 1 21

Table 2: Benchmarking results for Application 2 21

Table 3: Benchmarking results for Application 3 22

Table 4: Benchmarking results for Application 4 using PyTorch 22

Table 5: Benchmarking results for Application 4 using TensorFlow 22

Table 6: Benchmarking results for Application 5 23

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 5

MAELSTROM 2022

1 Executive Summary

Contents of this delivery: report on software performance benchmarking for machine learning

solutions.

● Overall status: Software benchmarking tools are on track and initial benchmarks have been

completed.

● A comprehensive timing infrastructure for benchmarking deep learning applications has

been developed.

● The machine learning solutions from Deliverable 1.3 have been benchmarked and initial

results are documented in this report.

● Development of the Mantik workflow platform and user interface is progressing well.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 6

MAELSTROM 2022

2 Introduction

2.1 About MAELSTROM

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke

compute system designs for optimal application performance and energy efficiency, a software

framework to optimise usability and training efficiency for machine learning at scale, and large-scale

machine learning applications for the domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across a range of

computing systems regarding energy consumption, time-to-solution, numerical precision and

solution accuracy. Customised compute systems will be designed that are optimised for application

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware

developments, driven by general machine learning applications, toward needs of weather and

climate applications.

The MAELSTROM software framework will enable scientists to apply and compare machine learning

tools and libraries efficiently across a wide range of computer systems. A user interface will link

application developers with compute system designers, and automated benchmarking and error

detection of machine learning solutions will be Wperformed during the development phase. Tools

will be published as open source.

The MAELSTROM machine learning applications will cover all important components of the workflow

of weather and climate predictions including the processing of observations, the assimilation of

observations to generate initial and reference conditions, model simulations, as well as

post-processing of model data and the development of forecast products. For each application,

benchmark datasets with up to 10 terabytes of data will be published online for training and machine

learning tool-developments at the scale of the fastest supercomputers in the world. MAELSTROM

machine learning solutions will serve as blueprint for a wide range of machine learning applications

on supercomputers in the future.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

Deliverable 2.3 aims to utilise and refine the benchmarking infrastructure developed as part of Work

Package 2 to evaluate the software performance of the machine learning applications delivered in

Deliverable 1.3. The benchmarking should be low-overhead to integrate and have minimal impact on

application performance while providing sufficient detail for users to begin to understand the

bottlenecks in their applications or to identify performance regressions as a result of changes. This

infrastructure should enable MAELSTROM applications to provide actionable insights from regular

(i.e., quarterly) performance benchmarking.

2.2.2 Work performed in this deliverable

This Deliverable included the development of the following components:

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 7

MAELSTROM 2022

● Fine-grained timing infrastructure for benchmarking

● Logging infrastructure for benchmarking

● Further development of the Mantik workflow platform and user interface

● Benchmarking of machine learning solutions

2.2.3 Deviations and counter measures

Following extensive discussion with the application teams, particularly at the MAELSTROM General

Assembly and Bootcamp, it was decided to provide a more flexible and less intrusive benchmarking

infrastructure than initially envisioned to simplify the initial software benchmarking. While

applications may still be implemented as Deep500 recipes and fully utilise the benchmarking

framework, we have additionally developed a lightweight timing infrastructure that can be easily

added to existing applications without significant modifications. In either case, detailed software

benchmarking results will still be produced.

We have further added logging support for services that did not exist or were not widely adopted

when the proposal was written, in response to changes in both MAELSTROM and broader

community usage. In particular, we integrated support for logging timing results to MLFlow (with

integration provided by Mantik) and to Weights & Biases (widely used by the machine learning

community and by several MAELSTROM applications).

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 8

MAELSTROM 2022

3 Benchmarking Infrastructure by Work Package Tasks

We detail recent progress in the MAELSTROM workflow and software benchmarking packages.

3.1 Workflow Platform and User Interface (Tasks 2.2 and 2.4)

3.1.1 Workflow Tools

In MAELSTROM, we aim to develop a web platform that simplifies the workflow of W&C researchers.

The platform has various targets that support the development cycle of machine learning

applications:

● It should especially be designed for development of W&C applications on HPC infrastructures

by providing a unified access to the hardware systems. Here, unified access means that we

want to abstract away the infrastructure and specific conditions of the respective

computation sites to avoid the requirement of in-depth knowledge for interaction with the

specialised software of each site, which typically results in a large overhead of work for

researchers.

● A main target is to achieve maximum reproducibility of machine learning solutions. The

platform should hence govern all parts of a machine learning workflow: data, application

code, experiments (input parameters and output metrics), and models. This allows

researchers to review earlier solutions and reproduce them at any time.

● Hosting a large number of machine learning applications and gathering all kinds of

information about them enables a detailed evaluation of the machine learning solutions. This

allows the software frameworks to provide suggestions for well-performing machine learning

solutions to other platform users when approaching new problems:

○ What data have people used for this problem?

○ Which machine learning algorithms, architectures, and input parameters have they

applied?

○ How well have these approaches performed, and which have performed best?

This gives newcomers the opportunity to directly jump into the state-of-the-art solutions of a

problem they are interested in and try improving it.

● We want to encourage collaboration within the community to improve the quality of

research and enable scientists to benefit from each other’s domain knowledge on specific

applications. Platform users should be able to share their machine learning applications with

researchers of their choice or the public to encourage knowledge exchange and improve the

machine learning solutions.

To address these requirements, the following was done:

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 9

MAELSTROM 2022

● We chose to utilise the Open Source machine learning framework MLflow1 for experiment

tracking and model versioning. The software provides a large range of functionality to

support the workflow of machine learning developers.

● For the usage of MLflow, we have developed a cloud architecture on the Amazon Web

Services platform that encapsulates a MLflow Tracking Server and the MLflow GUI2. Natively,

MLflow does not provide any security measures to host these software components publicly

with restricted access. Thus, on top of MLflow, we implemented services that allow for user

management and restrict the access to only allow authorised users to access the cloud

instance.

● To provide users with a unified access to HPC resources, we have developed the Mantik

Compute Backend. It exposes a REST API to submit machine learning applications directly to

a computation site. To allow this, the applications have to conform with the structure of

so-called MLprojects. This format is a feature of MLflow and makes machine learning

applications independent from any hardware or software environments, and thus, makes it

possible to execute them on any system.

● We have developed the Mantik Python package3 – that also comes with a command line

interface (CLI) – to provide users with an API that exhibits different functionalities.

○ To give MLflow users access to the cloud instance, the package is able to

authenticate users at the platform and give them access to the secured MLflow

services from Python applications.

○ The package provides Pythonic access to the Compute Backend API, and hence,

enables users to directly execute and supervise their machine learning applications

on the desired HPC system from anywhere.

The usage of the package is documented on GitHub.4

● Currently, the Mantik web platform, which integrates all requirements listed above, is under

development.

○ For experiment tracking, the platform will support MLflow. The long-term plan is to

completely embed the MLflow GUI in Mantik and encapsulate all MLflow features in

Mantik.

○ For projects that conform with the MLproject conventions, users will be able to

execute their machine learning applications on the HPC system of their choice

directly from the browser. The results of their runs will be logged in real-time and

directly displayed on the platform.

● The newly developed Deep500 benchmarking tools additionally support logging measured

performance data to Mantik’s MLflow instance.

4 https://github.com/mantik-ai/tutorials

3 https://pypi.org/project/mantik

2 https://cloud.mantik.ai

1 https://mlflow.org

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 10

https://github.com/mantik-ai/tutorials
https://pypi.org/project/mantik
https://cloud.mantik.ai
https://mlflow.org

MAELSTROM 2022

3.1.2 User Interface

3.1.2.1 Python and Command Line Interface

We built user interfaces that allow machine learning developers to:

● Develop all steps of their machine learning applications on a single platform.

● Benchmark the usage of different state-of-the-art machine learning libraries for their specific

use case.

● Get unified access to any HPC hardware and infrastructure.

Currently, the Mantik Python API and CLI provide programmatic access to the Mantik API. As

described in Section 3.1.1, the API provides features for experiment tracking and model versioning

(see Figure 1), and remote execution and supervision of applications on HPC hardware (see Figure 2).

In the near future, the GUI, i.e., the Mantik web platform, will provide a more abstract and visual

access to the Mantik API.

Figure 1: Usage of MLflow with the Mantik Python API. The Mantik package allows authentication at the

secured MLflow cloud instance and logging any desired information.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 11

MAELSTROM 2022

Figure 2: Execution of an application with the Mantik Compute Backend using the Mantik CLI. The required

YAML config allows configuring the resources that will be requested for the run (e.g. type and number of

compute nodes, CPUs and RAM per node, etc.), as well as defining any required software modules that should

be loaded in the run’s environment.

Figure 2 shows how a user can, e.g., start the training of a machine learning model on an HPC

resource from their local machine. Mantik offers additional commands that allows the user to

monitor and interact with a submitted job (or run):

● list: Shows a detailed list of all submitted runs.

● cancel: Cancel a submitted run.

● status: Shows a run's current status (e.g. if the job is queued, running, failed, or successful).

● info: Shows detailed information about an individual run.

● logs: Prints the application logs (i.e. stdout/stderr).

● download: Allows a single file or an entire folder from the run's working directory to be

downloaded.

3.1.2.2 Graphical User Interface

A preliminary GUI is the MLflow cloud instance (see Section 3.1.1) that gives access to stored

machine learning experiments and models (see Figure 3). This GUI also offers more advantageous

features that allow for a visualisation and comparison of a set of experiments such that researchers

can quickly gain insight into the results of their recently executed HPC applications.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 12

MAELSTROM 2022

Figure 3: Secured MLflow GUI. It shows all experiments and experiment runs of the users. A run represents e.g.

a model training with specific input parameters and output metrics and a trained model.

The GUI of the Mantik web platform is currently under development.5 A first version of the platform

will enable users to create machine learning projects that manage their data, code, experiments,

stored (versioned) models, and allow model training and inference (prediction) on HPC systems.

These projects can be shared with other users of the platform (including specific groups of users) to

promote knowledge exchange that improves the machine learning solutions.

Figure 4 shows the current layout of the landing page of the project6. Here, users can log in or

register (central right button or top right corner buttons), but also just try out the basic features

without requiring an account (central left button).

The user’s projects as well as public and shared projects hosted on the platform can be viewed and

filtered by different criteria (see Figure 5) such as Name, Author, and Problem Type (e.g.

Classification, Regression, Recurrent Neural Network, Natural Language Processing).

Once a project has been selected, the project overview and all other details can be viewed (see

Figure 6). This view provides all required information about the project:

● Overview (e.g. description, motivation, methodology, latest results, etc.)

6 The layout of the web platform and any pages displayed here (see Figure 3.1.2.4–3.1.2.6) may encounter
changes in the future since these were taken from an alpha version of the website that is still under
development.

5 https://github.com/mantik-ai/mantik-gui

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 13

https://github.com/mantik-ai/mantik-gui

MAELSTROM 2022

● Code repositories (GitHub, Gitlab, or Atlassian Bitbucket) containing the machine learning

application code

● Data (description and access)

● Models – Training (remote training on HPC), Prediction (remote prediction on HPC), Stored

(versioned) models.

● Runs (individual runs of training or prediction with models on HPC)

● Experiments (input parameters, metrics, trained models, files, plots, etc.)

Figure 4: Landing page of the Mantik web platform.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 14

MAELSTROM 2022

Figure 5: Overview of projects hosted on the platform. Projects can be filtered by applying different criteria.

Figure 6: View of a project. Here, we see all runs of the application executed on external infrastructure. Other

project details that can be viewed are listed in the menu bar on the left hand side.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 15

MAELSTROM 2022

3.2 Benchmarking Tools, Deployment, and Infrastructure (Tasks 2.3 and 2.6)

Deep500 [1] is a modular benchmarking infrastructure for high-performance deep learning. As part

of Deliverable 2.2, it was extended with better support for deep learning applications in weather and

climate. As part of this deliverable, we further extended it specifically to better support

benchmarking and analysing the MAELSTROM applications produced in Deliverable 1.3. This effort

primarily focused on supporting and annotating relevant regions of an application for timing (e.g.,

I/O, backpropagation), in addition to overall runtime; supporting applications written in any

framework or style; and integrating with external logging applications.

3.2.1 Timing for Machine Learning Applications

We extended Deep500 with a generic Timer interface, which supports marking the beginning

(start()) and end (end()) of a region to be timed and measuring the time elapsed between the

beginning and end of the region. This allows a developer maximum flexibility to deploy both fine-

and coarse-grained timing. Each region is annotated with a key that describes the region being timed,

to facilitate later analysis, and regions with different keys may be nested or otherwise overlap to

break down timing further.

We define the following default keys that an application may use:

● Epoch — One complete pass over a dataset during training

● Batch — One mini-batch during training

● Forward — Forward propagation during one batch

● Backward — Backpropagation during one batch

● Comm — Communication time during one batch (currently intended primarily for measuring

the allreduce operation used in distributed data-parallel training)

● IO — Time to load one mini-batch during training

Additionally, a generic “Other” key may be used to represent application-specific regions. Extending

this with new keys as needed is also simple.

CPU versus GPU Timing

Many deep learning applications utilise GPUs to accelerate training. However, this poses a challenge

for timing, as the GPU component of the application typically executes asynchronously with respect

to the CPU host; indeed, for best performance, synchronisation points should be minimised.

Therefore, timing a region on the CPU (e.g., forward propagation) may give misleading results, as

only the time spent on the CPU to launch the asynchronous kernels is measured, rather than the

complete time spent performing computations.

To address this, the Timer class is generic, and supports pluggable timing implementations. The

default implementation utilises standard high-resolution CPU performance timers. We also

implemented a region timer that utilises CUDA events, a lightweight timing infrastructure provided

as a standard part of the CUDA runtime for measuring elapsed time on GPUs. (A functionally

identical API is available for the HIP runtime on AMD GPUs.) These events only synchronise with the

CPU when explicitly requested, allowing this overhead to be amortised over many timed regions,

minimising any overhead to the application.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 16

MAELSTROM 2022

In the current implementation, due to technical reasons, GPU-side timing may have additional

overhead in frameworks besides PyTorch. This is because other frameworks (e.g., TensorFlow) do not

expose the underlying CUDA streams they launch GPU kernels on, making timing difficult. We plan to

address this in an updated version of the benchmarking tools.

We also note that the generic timing implementation makes it simple to add support for timing on

other accelerators which may be explored by Work Package 3.

Timing Distributed Training

The current timing infrastructure is agnostic as to whether an application is being trained in a

distributed manner. At their discretion, the user may time either only a single process among

multiple, or time all processes independently and separately log the results (e.g., to detect load

imbalance). For typical deep learning applications utilising distributed data-parallel training, the

frequent global synchronisation means that timing on a single process is representative. The timing

infrastructure can additionally be used to specifically measure the time spent in communication

operations, so an application can determine whether it is communication-bound.

In an updated version of the benchmarking tools, we plan to include additional support for timing

distributed training, particularly in the context of model-parallel training.

3.2.2 Framework-Independent Timing

The existing Deep500 implementation provided a basic CPU wallclock metric that can be integrated

into a Deep500 recipe, and its events interface can allow one to time specific regions. Our above

Timer interface adds additional support for GPU timing and logging (discussed below). However,

many applications in D1.3 are not currently implemented as Deep500 recipes; indeed, one is using

scikit-learn, which is not supported by Deep500. To ease the transition to Deep500 and allow

applications to get immediate performance feedback, the entire timing infrastructure is entirely

framework-independent. A user can directly add timing to their existing implementation without any

reimplementation or additional dependencies.

An important limitation we discovered during the benchmarking process is that many applications

are using “prebuilt” training loops (e.g., the model.fit() paradigm in TensorFlow/Keras). These

approaches do not provide a way to obtain fine-grained benchmarking results (e.g., of forward,

backward, or I/O time). While these libraries typically provide a “callback” mechanism for their

training loops, the granularity is limited to the batch level. While this can be circumvented by

rewriting the training loop, this is a large burden, and we plan to investigate methods that will enable

finer-grained timing despite these limitations.

3.2.3 Logging

The MAELSTROM workflow envisions a unified experience for monitoring and interpreting deep

learning applications. To this end, the timing infrastructure supports logging recorded times to the

MLFlow metrics logging interface provided by Mantik. Further, for flexibility and to support adoption

within the broader machine learning community, it also supports logging to Weights & Biases.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 17

MAELSTROM 2022

3.2.4 Example Usage

Below we provide an example of using the timing infrastructure with a generic PyTorch deep learning

training loop.

Figure 7: Example PyTorch training loop with added timing.

3.3 Data Input/Output Acceleration (Task 2.5)

As I/O can be a major bottleneck for deep learning applications for weather and climate, we ensured

that the timing infrastructure developed as part of Task 2.3 included an “I/O” region annotation from

the very beginning. This will allow developers to more easily pinpoint whether I/O performance

needs to be accelerated for their application.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 18

MAELSTROM 2022

However, measuring I/O remains a task that we plan to improve upon in future iterations of the

software, in collaboration with both MAELSTROM I/O acceleration frameworks (e.g., CliMetLab) and

other collaborations (e.g., the IO-SEA project). In particular, when training deep neural networks, I/O

is heavily asynchronous and is typically performed by many background threads, which also perform

tasks such as data preprocessing and augmentation; in some cases, parts of the process may be

offloaded directly onto GPUs. Our initial timing infrastructure primarily measures I/O time as it is

observed by the primary training loop (i.e., the time that is not hidden), which is the direct

bottleneck. Future improvements will incorporate a more detailed timing breakdown of the entire

I/O pipeline.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 19

MAELSTROM 2022

4 Software Benchmarking Results

In collaboration with the Work Package 1 application teams, the Deep500 timing infrastructure was

utilised to conduct initial software benchmarking of the machine learning solutions from Deliverable

1.3. With assistance from Work Package 2, each application integrated the timers and ran

benchmarks to produce these results, with the exception of Application 6. As Application 6 is an

experimental application not using deep learning, we did not benchmark it, as we expect it to

continue to evolve significantly over the remaining course of the MAELSTROM project.

Moreover, Work Package 2 has organised a workshop aimed to introduce Mantik to each of the

research applications at the end of November. Each researcher learned how they can utilise Mantik

to log their machine learning experiments, including input parameters and output metrics. In

conjunction with Deep500, which can be used with Mantik, the frameworks allow detailed

benchmarking of the machine learning solutions. Application 2 and 3 have already adopted both of

these frameworks for the results shown, with others following in upcoming deliverables.

Because of the different frameworks, structure, and needs of the applications, each application

conducted benchmarks at a different granularity, although always at a minimum reporting the time

per epoch (i.e., one complete pass over the training dataset). Below we report the results for each

application, along with brief details of their benchmarking setup.

4.1 Application 1: Blend Citizen Observations and Numerical Weather Forecasts

Application 1 aims to produce high-resolution (1x1 km) hourly temperature forecasts for the Nordic

countries, 58 hours into the future.

The benchmark consists of training a U-Net on a subset of the A1 dataset. We chose the U-Net

configuration that scored the best in the tests in Deliverable 1.3. We also chose a small subset (9 out

of 362 available training files) of the dataset and ran it for 10 epochs. The 122GB training data was

not cached in memory (even though it fits) in order to simulate the expected performance when

running on the full dataset.

We ran the benchmark on a single 40GB A100 GPU on the Juwels Booster system using TensorFlow

2.6 and CUDA 11.5. The data processing was done on the CPU and the training on the GPU.

The variability of the processing times are relatively low, as the minimum times are close to the

median times. The exception is the first batch, which is significantly slower than the others. This is

due to the fact that it includes the data loading time for the first file and framework initialization

overhead.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 20

MAELSTROM 2022

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]
Epoch 226.96571 228.82088 227.65208 234.10900 2.97469
Batch 0.09784 0.40341 0.11701 41.52411 2.31171

Table 1: Benchmarking results for Application 1.

4.2 Application 2: Incorporate Social Media Data into the Prediction Framework

Application 2 aims to use data provided by social media and weather sensors. As a first step, we use

the text of Tweets to predict the occurrence of rain at the Tweet’s location and time of creation.

We initialise the small variant of the DeBERTa model [3] with pre-trained weights from the Hugging

Face repository7. We finetune the model during one epoch on our large dataset (ca. 1 Mio. Tweets).

We used the transformer package (Version 4.25.1) with the PyTorch backend (Version 1.13.0+cu117)

to train our model on a NVIDIA Tesla V100 SXM2 16 GB from the Jülich Supercomputing Centre (JSC)

using CUDA 11.7. Batch, forward, and backward time was measured using GPU-side timing.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]
Epoch 1559.11014 1559.11014 1559.11014 1559.11014 0.00000
Batch 0.13183 0.18065 0.15963 0.54078 0.04867
Forward 0.07812 0.09223 0.08042 0.40440 0.02321
Backward 0.03128 0.06710 0.05871 0.12593 0.02822

Table 2: Benchmarking results for Application 2.

4.3 Application 3: Neural Network Emulators to Speed Up Weather Forecast

Models and Data Assimilation

Application 3 seeks to emulate the radiative transfer process for both short and long wavelengths, a

columnar problem found within all weather and climate models.

Here we use the TensorFlow framework, version 2.9.1. Training is carried out on one 40GB A100GPU

from ECMWF computing resources using CUDA 11.6. Batch time was measured using GPU-side

timing.

We evaluate the timing of the final model benchmark from the WP1 reporting, which features

convolutional and self-attention layers. Training was carried out as in that reporting, but for only 10

epochs, with an epoch containing 42,268 batches.

We observe very little variability in batch and epoch time. The maximum batch time is considerably

larger than the mean and median, but the standard deviation indicates that this maximum is a large

outlier, likely due to initialization overheads in the first batch.

7 https://huggingface.co/microsoft/deberta-v3-small/tree/main

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 21

MAELSTROM 2022

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]
Epoch 1801.48753 1806.99452 1807.31890 1812.72032 3.91004
Batch 0.02241 0.04203 0.04195 5.69129 0.01004

Table 3: Benchmarking results for Application 3.

4.4 Application 4: Improve Ensemble Predictions in Forecast Post-Processing

Application 4 aims to utilise deep neural networks to post-process the ensemble outputs of

ensemble numerical weather prediction systems to improve the quality and skill of forecasts.

The U-Net model from the ENS-10 [2] baselines was selected for benchmarking, and trained for 5

epochs with batch size 1 and the Adam optimizer, following prior methodology. To accelerate the

training process, we saved the dataset in NumPy format and used it during the training. Training was

performed using PyTorch 1.12.1 on one 40 GB A100 GPU from local ETH computing resources using

CUDA 11.6.0. Batch, forward, and backward time was measured using GPU-side timing.

Benchmarking results are shown in Table 4, including a breakdown of time spent on forward and

backpropagation and unoverlapped I/O. These results indicate training this model is heavily

I/O-bound, and that future performance improvements should focus first on optimising this stage of

the application.

We additionally benchmarked the same configuration using TensorFlow 2.11.0. In this case, we save

the dataset in TFRecord format. Results are shown in Table 5. By using TFRecords, I/O ceases to be a

bottleneck. However, overall epoch time is worse than with PyTorch, due to extremely large

initialization overhead for epochs. If this is neglected, then TensorFlow delivers improved

performance, with the median batch time being half that of PyTorch. Were the I/O pipeline in

PyTorch better optimised, we would expect PyTorch to deliver superior performance (up to 3x faster

batch times), based on the timing breakdown for forward and backpropagation.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]
Epoch 178.54078 189.92810 184.69046 214.2706 14.18365
Batch 0.03891 0.12581 0.12044 6.96415 0.27348
Forward 0.00472 0.00714 0.00525 4.71542 0.06220

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 22

MAELSTROM 2022

Backward 0.01346 0.01616 0.01587 0.58133 0.00931
IO 0.02158 0.10881 0.10577 6.02123 0.22815

Table 4: Benchmarking results for Application 4 PyTorch.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]
Epoch 196.47212 255.80167 263.16660 282.21101 34.15999
Batch 0.05325 0.16876 0.06064 46.32998 1.02192
IO 0.00043 0.03479 0.00089 28.64989 0.69822

Table 5: Benchmarking results for Application 4 TensorFlow.

4.5 Application 5: Improve Local Weather Predictions in Forecast Post-Processing

Application 5 explores the application of deep neural networks to statistical downscaling of

meteorological fields. The Tier-2 dataset, which is tested here, is designed for downscaling the 2m

temperature from ERA5 reanalysis data with km to the spatial resolution of the COSMOΔ𝑥
𝐸𝑅𝐴5

≃ 30

REA6 dataset (km). For training, 11 years of data (from 2006 to 2016) are used which∆𝑥
𝐶𝑅𝐸𝐴6

≃ 6

amounts to a number of 94052 training samples. The data from 2017 (2018) are reserved for

validation (testing).

As in Deliverable 1.3, a WGAN model is trained in this report. The WGAN model constitutes a

composite model with a convolutional U-Net similar to the study of Sha et al. [4], as generator, and a

conventional convolutional network as critic model. The model is implemented with Keras from

TensorFlow 2.6.0 and trained on a single 40GB A100 GPU node of the JUWELS Booster cluster using

CUDA 11.5.

The two sub-networks of the WGAN, the generator and the critic, are alternately optimised during

training. Here, the critic gets optimised five times with 32 samples each, before the generator is

trained on another set of 32 samples. Thus, the effective mini-batch size where both sub-networks

have been at least updated once, consists of 192 training samples. In total, the WGAN model is

trained for 60 epochs, meaning that the generator (critic) has been updated on the full training

dataset 60 (300) times.

In total, training time shows little variation. Even though the maximum training time for one

mini-batch is nearly 200 times larger than its average, the standard deviation is small (less than 50%

of the mean training time per mini-batch). Thus, this maximum is a strong outlier with only minor

effects on the overall training time. With a standard deviation of about 18.3 s, fluctuations in the

training time per epoch are also fairly small. The maximum time per epoch thereby corresponds to

the first epoch where the computation graph of Keras is built up and the training data is cached.

Metric Min [s] Mean [s] Median [s] Max [s] Stdev [s]
Epoch 553.93 586.63 595.58 661.61 18.27
Batch 0.17573 0.19720 0.20007 39.25604 0.09329

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 23

MAELSTROM 2022

Table 6: Benchmarking results for Application 5.

4.6 Application 6: Provide Bespoke Weather Forecasts to Support Energy

Production in Europe

Application 6 investigates whether weather models informed by large-scale weather regimes over

Europe have the ability to reduce the uncertainty of power forecasting for wind and solar resources.

This application is currently at a highly experimental stage and implemented using the Scikit-learn

package to apply dimensionality reduction and clustering, rather than deep learning solutions. As we

expect it to continue to evolve heavily over the remaining course of the MAELSTROM project, we did

not conduct software benchmarking at this time.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 24

MAELSTROM 2022

5 Conclusion

This Deliverable describes the current status of the MAELSTROM software benchmarking

infrastructure and the results of the initial benchmarking of the machine learning solutions from

Deliverable 1.3. The initial timing and benchmarking infrastructure is sufficient, and we see a clear

path forward for refining it toward providing further, more detailed information as well as

standardising the infrastructure used by all the applications for benchmarking.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 25

MAELSTROM 2022

6 References

[1] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, and Torsten

Hoefler. “A modular benchmarking infrastructure for high-performance and reproducible deep

learning.” In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019.

[2] Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi,

Luca Kummer, and Torsten Hoefler. “ENS-10: A dataset for post-processing ensemble weather

forecasts.” In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[3] Pengcheng He, Jianfeng Gao, and Weizhu Chen. “DeBERTaV3: Improving DeBERTa using

ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing.” arXiv

preprint:2111.09543, 2021.

[4] Yingkai Sha, David John Gagne II, Gregory West, and Roland Stull. “Deep-Learning-Based Gridded

Downscaling of Surface Meteorological Variables in Complex Terrain. Part I: Daily Maximum and

Minimum 2-m Temperature.” Journal of Applied Meteorology and Climatology 59.12, 2020.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 26

MAELSTROM 2022

Document History

Version Author(s) Date Changes
0.1 Nikoli Dryden (ETH), Tal Ben-Nun

(ETH)
07/12/2022 Initial draft

0.2 Nikoli Dryden (ETH), Fabian
Emmerich (4cast)

16/12/2022 Section 3.1 and other
edits

0.3 Nikoli Dryden (ETH) 23/12/2022 Minor edits
1.0 Nikoli Dryden (ETH) 23/12/2022 Final version

Internal Review History

Internal Reviewers Date Comments
Peter Dueben (ECMWF) 21/12/2022 Minor comments and

suggestions provided
Thomas Nipen (MetNor) 23/12/2022 Minor comments and

suggestions provided

Estimated Effort Contribution per Partner

Partner Effort
ETH 1 PM
4cast 1 PM
Total 2 PM

This publication reflects the views only of the author, and the European High-Performance

Computing Joint Undertaking or Commission cannot be held responsible for any use which may be

made of the information contained therein.

D2.3 Report on software performance benchmarking for ML solutions from deliverable D1.3 27

