
MAchinE Learning for Scalable
meTeoROlogy and cliMate

First version of workflow tools
published that allows to

perform quarterly
benchmarks of ML solutions

Markus Abel, Saleh Ashkboos, Tal Ben-Nun, Matthew

Chantry, Greta Denisenko & Fabian Emmerich
www.maelstrom-eurohpc.eu

www.maelstrom-eurohpc.eu

D2.2 First version of workflow
tools published that allows to perform
quarterly benchmarks of ML solutions

Author(s): Markus Abel (4cast), Saleh Ashkboos (ETH), Tal
Ben-Nun (ETH), Matthew Chantry (ECMWF), Greta
Denisenko (4cast), Fabian Emmerich (4cast)

Dissemination Level: Public

Date: March 31, 2022

Version: 1.0

Contractual Delivery Date: 31/03/2022

Work Package/ Task: WP2/ T2.2 T2.3 T2.4 T2.5 T2.6

Document Owner: 4cast

Contributors: ETH, ECMWF

Status: Final

MAELSTROM
Machine Learning for Scalable Meteorology and
Climate

Research and Innovation Action (RIA)

H2020-JTI-EuroHPC-2019-1: Towards Extreme Scale Technologies and
Applications

Project Coordinator: Dr Peter Dueben (ECMWF)

Project Start Date: 01/04/2021

Project Duration: 36 months

Published by the MAELSTROM Consortium

Contact:
ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom
Peter.Dueben@ecmwf.int

The MAELSTROM project has received funding from the
European High-Performance Computing Joint Undertak-
ing (JU) under grant agreement No 955513. The JU re-
ceives support from the European Union’s Horizon 2020
research and innovation programme and United King-
dom, Germany, Italy, Luxembourg, Switzerland, Nor-
way.

mailto:Peter.Dueben@ecmwf.int

Contents

1 Executive Summary 6

2 Introduction 7
2.1 About MAELSTROM . 7

2.2 Scope of this deliverable . 7

2.2.1 Objectives of this deliverable . 7

2.2.2 Work performed in this deliverable 8

2.2.3 Deviations and counter measures . 9

3 Workflow tools by Work Package Tasks 10
3.1 Workflow platform development (Task 2.2) 10

3.1.1 Engine . 10

3.1.2 Coordinator . 11

3.1.3 SDKs . 12

3.1.4 Bridges . 13

3.1.5 Model Database . 14

3.2 Benchmarking (Task 2.3) . 15

3.3 User Interface (Task 2.4) . 17

3.3.1 Command Line Interface . 18

3.3.2 Model Database Interface . 20

3.3.3 HPC Interface . 24

3.3.4 GUI for Executor and Job Status . 25

3.4 Data input/output acceleration for W&C (Task 2.5) 26

3.5 Deployment and infrastructure (Task 2.6) 29

4 Conclusion 31

List of Figures

1 Software architecture of the ML tool . 11

2 ML model database . 16

3 GUI of the ML software . 25

4 GUI for job status . 26

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

4

5 GUI for the execution graph . 26

List of Tables

1 Training results of Deep500 recipe on JUWELS-Booster supercomputer. 30

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

5

1 Executive Summary

Content of this Delivery: status of workflow tools published.

• Overall status: workflow tools are on track, delay in deployment handling

• Workflow tools are complete and published

• Delay in HPC deployment due to security restrictions

• Benchmarking done with Deep500

• Different User Interfaces are developed

• CliMetLab is used for data handling

• During the time of the project, alternatives have emerged with larger devel-

opment community

• Countermeasure for HPC risks: focus on security and evaluate integration of

alternative tools to accelerate development

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

6

2 Introduction

2.1 About MAELSTROM

To develop Europe’s computer architecture of the future, MAELSTROM will co-design

bespoke compute system designs for optimal application performance and energy

efficiency, a software framework to optimise usability and training efficiency for

machine learning at scale, and large-scale machine learning applications for the

domain of weather and climate science.

The MAELSTROM compute system designs will benchmark the applications across

a range of computing systems regarding energy consumption, time-to-solution,

numerical precision and solution accuracy. Customised compute systems will be

designed that are optimised for application needs to strengthen Europe’s high-

performance computing portfolio and to pull recent hardware developments, driven

by general machine learning applications, toward needs of weather and climate ap-

plications. The MAELSTROM software framework will enable scientists to apply and

compare machine learning tools and libraries efficiently across a wide range of

computer systems. A user interface will link application developers with compute

system designers, and automated benchmarking and error detection of machine

learning solutions will be performed during the development phase. Tools will be

published as open source.

The MAELSTROM machine learning applications will cover all important compo-

nents of the workflow of weather and climate predictions including the processing

of observations, the assimilation of observations to generate initial and reference

conditions, model simulations, as well as post-processing of model data and the

development of forecast products. For each application, benchmark datasets with

up to 10 terabytes of data will be published online for training and machine learn-

ing tool-developments at the scale of the fastest supercomputers in the world.

MAELSTROM machine learning solutions will serve as blueprint for a wide range of

machine learning applications on supercomputers in the future.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

Deliverable 2.2 aims at the development of an open-source ML platform that im-

plements the MAELSTROM protocol of Task 2.1. The platform should provide a

user-friendly workflow for developing and benchmarking ML solutions. Users will

be able to store their ML solutions in the MAELSTROM protocol and reconstruct it at

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

7

later times to achieve the maximum reproducibility of ML applications. Moreover,

ML models created on the platform and stored in the MAELSTROM protocol will be

shareable with other users of the platform so they can reproduce the ML solutions.

The initial version of the platform due with this Deliverable should provide the first

version of ML solutions built on the first version of benchmark datasets delivered

by Task 1.2.

2.2.2 Work performed in this deliverable

The Deliverable included the development of three different components:

• Unification and acceleration of W&C data input/output (I/O)

• Benchmarking of deep learning ML solutions

• ML platform

W&C Data I/O

In an effort to simplify, unify and accelerate data I/O for W&C applications, a Python

package was developed that provides an interface to the ECMWF cloud which holds

the data of the first version of the benchmarking datasets provided by Task 1.2

(Section 3.4). For each of the applications, a plugin has been developed that gives

access to the respective data. The implemented caching methods achieve acceler-

ated data I/O.

Bechmarking Deep Learning Models

To allow benchmarking of ML solutions that use deep learning techniques, a frame-

work was developed (Sections 3.2 and 3.5). This framework allows detailed inves-

tigation of deep learning models and enables users to create reproducible recipes

to create ML models on different datasets and hardware.

ML platform

For the MAELSTROM ML platform, the backend and a preliminary version of the

Graphical User Interface (GUI) were developed. The backend was built with several

components that allow the development, execution and storage of ML solutions.

The GUI enables a user to visualize the execution of their implementation. The

steps that produce the ML model can be executed on different hardware architec-

tures such as a desktop machine, cloud computers, or high-performance computer

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

8

clusters. While the first two are fully supported, the implementation of the latter

has suffered from unexpected obstacles that appeared due to the security restric-

tions by the HPC systems (i.e. Jülich Supercomputing Center, JSC).

2.2.3 Deviations and counter measures

An essential part of the ML platform is to allow users to execute their ML solu-

tions on HPC systems. The implementation of this feature, however, has been

delayed due to security restrictions that prevent vulnerability of the systems. In a

first attempt, we have tried to use a special interface provided by JSC that allows

execution and supervision of jobs. This turned out not to be realizable with the soft-

ware architecture of the ML platform at the time. As a result, we had to initiate a

large-scale reconstruction of the architecture. With the help of the responsible de-

velopment team at JSC, current investigations are directed to alternative solutions

which will allow a more user-friendly access.

The deployment and development on the E4 cluster was easier since the access

concept is much more friendly for the executor deployment. Security is still at a

very high level, though.

An approach different from JSC, at European project level, is the ICEI-FENIX project1

that is entitled to develop a standard interface for interactive computing with the

usage of Jupyter on the PRACE center. The evaluation of this solution with respect

to the security issues will be subject of work within the next months.

1www.fenix-ri.eu

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

9

https://fenix-ri.eu

3 Workflow tools by Work Package Tasks

3.1 Workflow platform development (Task 2.2)

Any ML workflow can be split into at least three separate steps that reflect individ-

ual, isolated instructions: data loading and cleaning, feature engineering, model

training and evaluation. These steps represent an entire ML model pipeline. The

steps in a pipeline build upon one another and may be executed sequentially or in

parallel. Hence, from a mathematical perspective, pipelines can be represented by

directed acyclic graphs (DAGs).

The Mantik ML tool2 is an open-source software3 that allows executing DAGs. Users

can define computational steps and plug them together to form a pipeline. Inter-

nally, Mantik creates computational graphs that – if triggered by the user – can be

executed on any hardware infrastructure such as a local machine, cloud computers,

or HPC architectures. In the Mantik framework, each node in a DAG is an isolated,

containerized microservice that is responsible for a single, well-defined task. De-

pending on the type of node, i.e. if a node is a root or a leaf node, it implements

one or two interfaces, respectively, that represent the output and/or input of the

node. This concept makes pipelines very robust and reproducible.

To operate, Mantik is split into various different components (see Fig. 1):

1. Engine

2. Coordinator

3. Software development kits (SDKs)

4. Bridges

5. Model database

In the following, each component and its responsibility in the Mantik framework will

be explained in detail.

3.1.1 Engine

The Engine is the central component of Mantik. It allows users to create individual

pipeline steps. Using previously defined steps, users can take these steps and

plug them together to form a pipeline. The Engine then builds the computational

DAGs representing the user-defined pipelines and triggers their execution upon

2www.mantik.ai
3www.github.com/mantik-ai/core

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

10

https://mantik.ai
https://github.com/mantik-ai/core

Figure 1: Sketch of the software architecture of the Mantik framework.

user request. Pipeline execution, i.e. direction of the input and output of each step

is handled by the Coordinator, which runs on the hardware that was requested

by the user. Once a pipeline was executed, the Engine supervises the execution

process and, as soon as the pipeline is finished, collects the outcome, which can

be of any kind (e.g. data or a trained model), and passes it back to the user.

Due to containerization, the Mantik Engine can be deployed and run on any ma-

chine: users may operate their own Engine or connect to a publicly available Engine

running in a cloud service such as Amazon Web Services, Google Cloud Comput-

ing, or Azure. Users can interact with the Engine via the SDKs that are available in

different programming languages. Currently supported are Python, Go, and Scala.

These SDKs allow creating and running pipelines as well as fetching the results of

a pipeline from the Engine.

3.1.2 Coordinator

The Coordinator is responsible for the execution of DAGs. Due to the containeriza-

tion concept of Mantik, it is able to execute pipelines on various different hardware

architectures. Each pipeline step is spawned as a microservice that is informed

about its input and output. I.e., the Coordinator tells each microservice whether

it will receive an input, and where it should forward its output to. As soon as the

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

11

microservice representing the DAG’s root node is ready, the Coordinator initiates

the pipeline process. If requested by the Engine, the Coordinator has access to all

microservices and the information about their state and, as a result, can inform the

Engine as soon as a pipeline has succeeded – or failed – and report the outcome.

Currently, the Coordinator supports different hardware architectures. Well sup-

ported is the execution of pipelines on local machines with Docker or in a cloud

with Kubernetes. For HPC architectures, the Coordinator only offers very prelimi-

nary support. Currently, we are working to extend the usability of the Coordinator

on HPC by focusing on the hardware architecture of the JUWELS cluster of FZJ.

Subsequently, we will transfer this solution to apply it on the E4 hardware.

The aim is to be able to run the Coordinator on login nodes of the cluster. It

then can request computing resources and run each microservice on the provided

compute nodes. Due to the heavy security restrictions on HPC clusters, it is not

yet possible for Engine and Coordinator to communicate with one another and

exchange any sort of information. Specifically JSC only allows connecting to the

cluster via SSH – and outgoing connections are generally forbidden. As a result,

we are only able to manually execute computational graphs created by the Engine

via batch scripts (sbatch). The Coordinator is also unable to report any pipeline

results to the Engine but can only store them locally in a user-specified position on

the cluster storage. Thus, our short-term goal is to allow running the Coordinator as

well as the Engine inside the cluster. The long-term solution, however, should be to

use a special form of authentication that allows for- and backward communication

between an Engine outside, and a Coordinator inside the cluster. One possible

solution could be to use JSC’s solution for their JupyterHub "Jupyter JSC".4

3.1.3 SDKs

The SDKs have two main features:

1. Providing an interface to the Engine to set up and execute pipelines.

2. Development of pipeline steps (Bridges).

The Mantik SDKs provide various methods to interact with the Engine. To begin

with, they allow connecting to any Engine. This can be a local Engine or one that

runs in a cloud service and is exposed to the internet. In addition, the user can

put individual pipeline steps (i.e. Bridges) together and let the Engine create and

store the DAG reflecting that pipeline. The evaluation of DAGs is lazy, meaning

4www.jupyter-jsc.fz-juelich.de

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

12

https://jupyter-jsc.fz-juelich.de/

that the execution is only triggered if requested. Upon completion, the result can

be requested from the Engine.

3.1.4 Bridges

In the Mantik framework, pipeline steps are Mantik Bridges.5 Bridges encompass

a certain functionality and can be developed in any of the supported programming

languages (Python, Go, Scala). To be more precise, they implement a certain (data

processing) algorithm and, depending on the type of the Bridge, are able to apply

it on a given input and forward the result to a subsequent Bridge or the Engine. To

achieve this, Bridges wrap one or several frameworks and allow implementing al-

gorithms using these frameworks. A Python Bridge, for example, may encapsulate

frameworks such as NumPy, pandas, scikit-learn, TensorFlow or PyTorch – either

individually or as a set.

Bridges have configuration files in which all its meta information are defined – the

MantikHeader. It describes details such as the Bridge’s name, its input and output

and what purpose it is suitable for. There exist three types of Bridges:

• DataSet

• Algorithm

• Trainable

A DataSet Bridge typically is the root node of a DAG and has no input, but only

an output. This means that they are designed to load a certain type of data and

provide it for the pipeline. Due to the microservice architecture of pipelines in

Mantik, this allows scalable data loading by parallel execution of DataSet Bridges.

The output of several Bridges can then be combined and passed to subsequent

pipeline steps.

Algorithm Bridges implement algorithms that can serve different purposes. They

can be designed to perform data cleaning, filtering, augmentation, or feature en-

gineering. Hence, they have one input, which is data streaming into the Bridge,

and one output, which is the outcome of the implemented algorithm. In addition,

Algorithm Bridges may also already implement any ML algorithms whose result can

be used for any following data processing step.

The third type of Mantik Bridges, the Trainables, allow implementing the training

and evaluation of ML models with the data produced by prior pipeline steps. They

require one input (preprocessed data) and can have up to two outputs. If used to

5www.github.com/mantik-ai/bridges

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

13

https://github.com/mantik-ai/bridges

train a model, they provide the trained model and any user-defined metrics that

allow analyzing the quality of the model. On the other hand, Trainables (i.e. the

models they produced) can be used in pipelines to apply the trained models on the

data in order to create the desired outcome.

3.1.5 Model Database

The Mantik AI Database allows to persistently store and reuse bridges and items

and reproduce full workflows. The database covers user accounts, MantikItems

(including bridges and headers), workflows, including the generated computational

graph, and experiments, i.e. single execution of workflows including MantikItem

configurations and training results (training statistics, models, meta statistics on

resource utilization).

We chose a relational database design in PostgreSQL to mirror relations between

objects in Mantik. Files, such as serialized trained models, are not stored by the

database itself. Instead, a file-service is connected that stores files and makes

them available via file URL. To avoid repeated entries, the database is normalized.

Thus semantic data-models differ from the actual tables; here, only the semantic

models are described:

• Account: A user account database entry contains the user name, email and a

password hash. The combination of name and email must be unique.

• Files: A file entry contains information on its owner, file location in the file

service and the file hash to check whether a file is already present in the file

service.

• MantikItems: A MantikItem is represented as a combination of its owner, the

MantikHeader and used bridge, a reference to the payload file, creation time

and its version.

• Workflow: A workflow is a directed acyclic graph (DAG) in which MantikItems

are the nodes. Each workflow has an owner, optionally a name and descrip-

tion, and stores the defining Mantikfile.

• Experiment: An experiment refers to one execution of the workflow. Man-

tikItem configurations are stored referring to nodes in the workflow DAG. Train-

ing results and meta statistics on resource utilization may also refer to single

nodes or the workflow as a whole. Trained models are stored as files in the

file-service.

All semantic models can be referenced by ID.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

14

File service

The file service handles storage of larger files that are only referenced in the

database by a shared file ID. It is meant to manage e.g. AWS S3 storage buckets

and is currently implemented for a local file service. The file service API provides

the methods store_file and load_file for file handling.

The file service is called by the database client; the user is not meant to directly

access it.

Architecture

Because Mantik is built to support reproducibility, sharing and mix-and-match of

components, a lot of repetitions are to be expected in the AI database. To save

on time and have a clearer organization, the database is normalized up to a point

where each table represents one immutable object that can be used inside Mantik.

This way, repetitions are avoided and IDs have a semantic dimension by guaran-

teeing uniqueness.

Overlap With Other Projects

The architecture of the Mantik model database has been compared to the MLFlow6

implementation and is astonishingly similar, in particular with regard to the model

format for Python models (Python pickle). As described above, we think it may be

very useful to join our ideas with MLFlow. At the current stage, though, this is not

yet possible.

3.2 Benchmarking (Task 2.3)

For the benchmarking task, we use and extend Deep500 [1], a modular benchmark-

ing infrastructure for high-performance deep learning. Deep500 factorizes training

neural networks at a high level into four levels: operators, network processing,

training, and distributed training. This modular definition allows users to easily

construct reproducible recipes for training ML workloads on different datasets and

system. Recipes then generate detailed reports (e.g., logs, violin plots) on specific

performance aspects during training, as chosen by the users.

In the MAELSTROM project, we are extending the framework in collaboration with

the applications in WP1 to create a simple solution that is compatible with the

weather and climate workloads, with one recipe per application. At the same time,

6www.mlflow.org

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

15

https://mlflow.org/

Figure 2: Schematic view of the database tables and their relations. Vertical dashed
lines separate semantic data models. Arrows indicate foreign key rela-
tions, referencing other tables by ID.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

16

the framework should seamlessly provide the required benchmarking data (e.g.,

for WP3) on all tested systems. In particular, in the first 12 months of the project

we added the following features:

• Weather Dataset Class: We define a custom dataset class (the class is

named D500WeatherDataset) for loading weather datasets, which are large

and fragmented w.r.t. the learning tasks. We also define a Sampler class to

handle random sampling of weather data and apply necessary data augmen-

tations.

• PyTorch Model: We improve PyTorch integration in order to reduce over-

heads generated by Deep500 during training.

• Loss function: We provide loss functions that are commonly used in weather

and climate workloads. Specifically, Structural Similarity Index (SSIM) [2],

latitude-weighted error, and linear combinations (MSSIMLoss) thereof.

• Scheduler: We define a hyperparameter scheduler for Cyclical Learning

Rates [3] (CyclicLRScheduler), which is used by Application 4 in WP1.

• Measurement: We implement a composite event hook to measure training,

validation, and test loss, while also measuring multiple performance metrics:

training time per iteration and per epoch for both training and test phases

(RMSETerminalBarEvent).

• Flexibility: We introduce command-line arguments to Deep500 recipes, such

that mutable aspects of the recipe can be modified in hyperparameter searches

or by larger systems such as Mantik.

With those features in place, creating recipes for any of the WP1 applications

should follow a standard template, easing the work for the ML practitioners and

abstracting away low-level details of benchmarking metric collection.

3.3 User Interface (Task 2.4)

The user interface as implemented in the first 12 months of the MAELSTROM project

realizes the requirements found up to day. A software interface, in general, denotes

the values that can be passed to an application or a method. The workflow tools

are based on the Mantik package, which in turn has a variety of methods available

to execute ML tasks. For MAELSTROM, we adapted the protocol and published it in

the open source Mantik repository on github as an add-on. We have thus developed

abstract interfaces for the general usage of the methods which in turn are based

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

17

on the MAELSTROM protocol. Additionally, to visualize the execution, a Graphical

User Interface has been built where the execution of the tasks can be monitored.

In general, we notice that the MLFlow Project has outperformed the Maelstrom

development speed in recent years, since it has 71 contributing companies. Con-

sequently, the option to use as much as possible of MLFlow is currently evaluated.

In turn, MAELSTROM could contribute the executor flexibility and the HPC usage to

MLFlow. Both projects are Open Source, however with different licences (Apache

2.0 vs. GNU AGPL), which needs to be double-checked for compatibility. The fol-

lowing description contains work done within the MAELSTROM project, and has no

interference with MLFlow.

As already described above, one particular challenge is the communication to HPC,

which typically is highly secure. It cannot be easily bypassed such that the moni-

toring through an external GUI, e.g. in a browser on a local machine, is not possible

at the moment. The current activities aim at a communication which allows at least

for a partial display of the executor status.

In the first approach, to allow first applications to be run by the MAELSTROM pro-

tocol, the major execution steps are handled by methods that in turn are passed

to the Executor. For HPC, the current status is that we strip the execution graph,

pass it to the HPC environment and execute it standalone using SLURM. The ex-

ecutor is then started in a Singularity container and a "Coordinator" cares for the

parallel execution on multiple nodes. The execution on GPUs is subject of future

development.

3.3.1 Command Line Interface

There are roughly two groups of Command Line Interfaces (CLI): for the backend

user who manages the operation of the workflow tools (using the modified Man-

tik engine), and the ML developer who is using the MAELSTROM protocol to run

machine learning tasks based on the protocol developed.

There are no additional steps needed for communication, however, the URL of the

MAELSTROM engine needs to be known. Once the Engine is running, the commu-

nication with it is handled using the following syntax. The programming languages

used are Python for ML on the HPC infrastructure and in general Scala, which is

managing the backend with the Mantik Engine.

You can issue basic operations without interacting with Python or Scala.

The tool is called with the command mantik and communicates to a running Mantik

Engine via the mnp (Mantik/MAELSTROM Node Protocol). This protocol is based

on gRpc (Google Remote Procedure Call - grpc.io) which is an excellent basis for

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

18

efficient passing of messages.

Basic Usage

command execution mantik <command-name> executes the given command.

help For a help text, call mantik help or mantik <command> -help

flags Most commands have a set of flags which help to modify their behaviour.

In the following, we describe the subcommands and their usage.

Item Management

An Item is a container with a specific set of packages and a payload, i.e. the actual

code to be executed.

show items Items are shown by Mantik Items

a single item Details on a specific item are shown, including Mantik header, by

mantik item <name>

item extraction Extract an item into a directory for inspection or local build with

mantik extract -o <directory> <name>

build item from directory A directory is packed into a Mantik item with mantik

add -n <name> <directory>

tag items Items are tagged with a new name calling mantik tag <name> <new-name>

Log into a remote registry

You can log into a remote registry (e.g. Mantik Hub) using

login mantik login

logout mantik logout

Transfer items to and from a remote Registry

You can download and upload Mantik Items to a remote registry (e.g. Mantik Hub).

In order to do so, you have to be logged in (cf. above).

download mantik pull <name>

upload mantik push <name>

Deploy Algorithms or Pipelines

It is possible to deploy items on your local Mantik engine, using Docker or Kuber-

netes.

deployment mantik deploy <name>

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

19

3.3.2 Model Database Interface

The user interface to the database is provided by Python data classes for the afore-

mentioned semantic data models alongside an SQL client. The client is capable of

handling the uploading logic based on semantic data models. Some internal logic,

such as testing for uniqueness of uploaded files, is implemented in the database

itself as an SQL function.

Connection

The client is initialized with information on database connection:

• db_user database user name

• password database user password

• dbname database name

• port database connection port

• host database host

Semantic data models

Dataclasses are provided that abstract information into semantic data models and

mediate between user interface and database client.

• MantikAccountDBEntry: User name, email, password hash and (optional)

user ID.

• MantikFileDBEntry: File information (including file hash), owner ID, (optional)

file URL referencing the file service.

• MantikItemDBWrapper: MantikItem information (name, owner, version), Man-

tikHeader, payload (associated files).

• MantikWorkflowDBWrapper: Workflow information, DAG nodes, DAG edges.

• MantikExperimentDBWrapper: Run information, training statistics, meta statis-

tics, MantikItem configurations.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

20

Add Mantik entities to the database

Mantik entities refers to the semantic data models wrapped into above mentioned

data classes. By default, each database insert returns the (generated) ID of the

main table each entity refers to.

• client.add_user(MantikAccountDBEntry): Add a user, with a constraint on

uniqueness of user name and email. Returns user ID.

• client.add_file(MantikFileDBEntry): Add a file to the database and file

service if file hash is not present in the table. Returns file ID.

• client.add_item(MantikItemDBWrapper): Add a MantikItem, MantikHeader

and payload if not already present. Returns item ID.

• client.add_workflow(MantikWorkflowDBWrapper): Add a workflow and its

DAG representation. Returns workflow ID.

• client.add_experiment(MantikExperimentDBWrapper): Add an experiment

(run), statistics, generated files and MantikItem configurations. Returns run

ID.

Report

A Python function to retrieve all data of a single experiment and create a Markdown

report is available as an extension of the client as

ai_client.extras.report.generate_report(client, experiment_id) -> str.

An example report is shown below:

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

21

Report on experimentReport on experiment

UserUser

Name: User Name

Email: user@mail.domain

ID: 5a256fb9-8f35-417e-a273-5f7ba2ee4a22

BridgesBridges

Bridge IDBridge ID NameName OwnerOwner HeaderHeader Creation DateCreation Date PayloadPayload VersionVersion

Get the bridges with

ItemsItems

Item IDItem ID NameName OwnerOwner HeaderHeader Creation DateCreation Date PayloadPayload VersionVersion

02e39f0a-
b8ed-4857-
a962-
db4a188d9073

my_awesome_ml_notebook

27080a18-
c928-4ac2-
bcf4-
3829927a87ed

2c5911cd-
d379-424d-
ae69-
dfb1afb9dd68

2022-03-10
19:16:54.762248+00:00

cc5e63ae-
487a-4935-
a543-
23040bc3b637

latest

Get the items with

curl file:///home/user/ai-database/.file_service/282e64fc-7c84-418d-9db6-d9331702cf63 .

ModelModel

The trained model is available from

curl file:///file_service/ai-database/.file_service/cbbc66c8-e043-4e0e-849a-45cc1812465c .

The training stats are

Run IDRun ID Node IDNode ID Stats JSONStats JSON aritfact_file_idaritfact_file_id

b96e777f-9c94-4220-acd0-01bd3c5eeaf1 None score=0.9393433500278241 69b28d21-7856-4acf-a73f-bf4a7199fdc4

WorkflowWorkflow

IDID NameName DescriptionDescription OwnerOwner Creation DateCreation Date MantikfileMantikfile VersionVersion

76ab2f2d-045a-4f9a-
b4dd-7cfd9ad4c40f

My awesome
workflow

Just an
awesome
workflow

5a256fb9-8f35-417e-
a273-5f7ba2ee4a22

2022-03-10
20:16:54.776992 1.0

The workflow has been used in experiment runs

b96e777f-9c94-4220-acd0-01bd3c5eeaf1

RunRun

Run InfoRun Info

IDID Workflow IDWorkflow ID OwnerOwner Execution dateExecution date

b96e777f-9c94-4220-acd0-
01bd3c5eeaf1

76ab2f2d-045a-4f9a-b4dd-
7cfd9ad4c40f

5a256fb9-8f35-417e-a273-
5f7ba2ee4a22

2022-03-10
20:16:54.807292

Run training statsRun training stats

Run IDRun ID Node IDNode ID Stats JSONStats JSON aritfact_file_idaritfact_file_id

b96e777f-9c94-4220-acd0-01bd3c5eeaf1 None score=0.9393433500278241 69b28d21-7856-4acf-a73f-bf4a7199fdc4

Run meta statsRun meta stats

Run IDRun ID Node IDNode ID StatsStats
TypeType StatsStats

b96e777f-9c94-4220-acd0-01bd3c5eeaf1 None Runtime
start=1646939810.7822099
end=1646939810.8224137
duration=0.04020380973815918

3.3.3 HPC Interface

For the HPC interface, several possibilities have been investigated: the UNICORE

(i.e. pyunicore) client, using slurm directly on the infrastructure, and eventually

the executor interface we have specifically developed within MAELSTROM.

UNICORE7 is a framework to enable federated access to computing resources:

"UNICORE provides tools, services and RESTful APIs for integrating HPC compute

and data resources into federated environments, in a secure and transparent fash-

ion."

Ideally, it should be used as ground to build upon. We have spent at least a person

month on UNICORE usage. It turns out to be a very useful tool, that, however,

can only realize batch execution on HPC hardware. Since the workflow is aimed

at feedback from the job executed we searched for alternatives. The basic insuffi-

ciency was that UNICORE delivers information only about a single job, and we aim

at the details of each subunit, e.g. if hyperparameters are searched. That will open

the way for optimization and a more efficient and energy-saving usage of the valu-

able HPC ressources. UNICORE basically uses the available scheduling and queuing

mechanisms of the infrastructure one aims at. For JSC and E4 the job execution is

handled by Slurm.

Other common schedulers on HPC are Torque, Slurm, LSF, SGE and LoadLeveler. A

good comparison of features is found at the Slurm website8. So, to directly execute

a batch job, we can directly use Slurm instead going through UNICORE. That still

does not solve the issue of communicating the job status back to the Engine, but

there are workarounds within Slurm, e.g. through emails.

For MAELSTROM, we investigated together with the team at JSC the possibility to

enable backward communication using the secure shell. The cooperation turned

out to be very helpful in clarifying the available options. In Juelich, for usage of

Jupyter notebooks, ssh has been enabled to communicate with a local Jupyter note-

book, however, such that no security breach can occur (or rather the probability

of security breach is minimized). Consequently, within the MAELSTROM project, a

redesign of the execution has been developed such that a HPC executor, or Coordi-

nator, executes one task/model on HPC such that it lives on the entrance node and

distributes work to other nodes of the cluster.

Currently, a Python interface is implemented, described above in the SDK section.

We implemented an example based on the Application A6 such that other users

are able to use it.

7www.unicore.eu
8https://slurm.schedmd.com/rosetta.html

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

24

https://www.unicore.eu/
https://slurm.schedmd.com/rosetta.html

3.3.4 GUI for Executor and Job Status

The Engine executes many jobs, which in turn consist of subunits. This is repre-

sented by the execution graph. The graphical user interface (GUI) shows all jobs

submitted to MAELSTROM/Mantik in real time such that the status of the job exe-

cution can be followed live, cf. Fig. 3. In the background, logging is used to track

any change of the status.

Figure 3: Image of the GUI to the Engine. The jobs that are currently executed and
the already finished jobs are shown.

To track the status of a job with all its dependencies and subgraphs the corre-

sponding panel shows the current job status, cf. Fig. 4.

Finally, the execution graph itself may become very complex, and visualization

may help to understand possible optimization strategies. It can be viewed in a

separate panel, cf. Fig. 5.

The GUI, in general will be extended step by step to allow visualization of the

various methods executed by a job in form of an execution graph.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

25

Figure 4: Image of the GUI panel for the job status. The current status is displayed.

Figure 5: Image of the GUI panel for the the execution graph of a job. The example
is a simple job with only 4 nodes.

3.4 Data input/output acceleration for W&C (Task 2.5)

To unify data input/output (I/O) throughout MAELSTROM, the first set of the bench-

mark datasets for the MAELSTROM domain applications which were published in

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

26

Deliverable 1.1 are already using the same Python package, CliMetLab9, for data

ingestion. CliMetLab aims to simplify the access and use of meteorological and

climate datasets. Within the framework of CliMetLab the MAELSTROM applications

have developed plugins which can be installed via the python package manger pip.

Once installed, each of the datasets can be downloaded and loaded into memory

with equivalent commands for each dataset. In doing this the MAELSTROM applica-

tions have standardised the access to each of the applications, lowering the barrier

not only to use but also to adopting tools that accelerate I/O. This standardisation

will greatly simplify the adoption of the data tools developed in MAELSTROM. As the

definitions of the datasets are done within the CliMetLab plugins, the data access

within the python code is trivial and done via a small number of lines of code with

minimal boilerplate coding. For example, in Application 3:

1 cmlds = cml.load_dataset("maelstrom-radiation",subset="tier-1")

2 dataset = cmlds.to_xarray()

If the benchmark datasets evolve, increasing in size or complexity, this can be cap-

tured with version control and dataset labels (e.g. the subset label used above). To

minimise both local storage and data requests to the main dataset storage system,

CliMetLab is in the process of implementing caching and mirroring of remote data

in a local location. This would enable multiple users on the same system to access

the dataset without duplication.

By the end of the MAELSTROM project, the application datasets will have devel-

oped and expanded to the point where most, if not all, of the MAELSTROM datasets

will not fit into the system memory. In this case training and inference times can

be limited by the speed at which examples can be read from disk. This would be

highly undesirable, as it means computational resources will be under-utilised. The

extent to which data loading will be the computational bottleneck will depend on

a number of features including the hardware used, the computational demands on

the hardware (e.g. number of concurrent users trying to load data on HPC sys-

tems), and crucially the data storage choices. This last point includes both the

file format and the layout of the examples within the files themselves. The file

choices are normally inherited from whichever system produced the training and

inference data. For example, in Applications 3 and 5, the data originates from

model forecasts. The MAELSTROM benchmark datasets cover a range of different

applications, which cover different data access patterns. For optimal throughput

of data, the examples should be written in compact chunks within the files. In the

case of application 5, this is broadly true without any data manipulation. Coherent

9https://climetlab.readthedocs.io/

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

27

https://climetlab.readthedocs.io/

chunks of latitude and longitude for a small number of fields are the required data.

For Application 3, which requires vertical columns of data for many atmospheric

fields, these are natively not stored coherently.

The first of the benchmarking tasks, completed in a parallel deliverable, will begin

to capture the differences across the applications, highlighting which of the appli-

cations have significant time spent in I/O, either as an initial step before training or

streaming data during training. Once the benchmarking has been assessed, those

applications with significant I/O overhead can be examined to highlight problematic

elements. By using CliMetLab, assessing these applications will be a standardised

procedure. Broadly there will be three aspects for optimisation of I/O. The first

will capture the hardware resources being dedicated to reading data. The sec-

ond will be software optimisation. The third will be data format and structure on

disk. For the first part, Mantik will enable running and storing the configuration of

experiments across hardware systems. This will allow the compute resources for

I/O to be optimised. For the second part, our applications shared dependency on

CliMetLab means optimisation of all applications can be carried out together. For

example changing the use of the underlying xarray and Dask tools that are used

under the hood of CliMetLab. Therefore, optimisations here will be easy to adopt

across the applications and provide guidance to future creators of CliMetLab plu-

gin datasets. For the third part of optimisation, rewriting and restructuring data,

again CliMetLab helps to create a smooth path. CliMetLab plugins point towards

a number of backend file types, e.g. NetCDF, GRIB, Zarr and TensorFlow records;

with minimal changes required for the plugin developer and no pain for the plugin

user. This enables the exploration of the file types and data chunking within those

types, while making no changes to the wider coding environment for benchmark-

ing. This has already been explored for Application 3 which has interfaces to both

NetCDF TensorFlow records versions of the dataset. The former provides the user

with complete metadata, in the latter the data has been restructured to bring all

variables together in examples to be used for efficient training and inference.

This deliverable marks an intermediate step in the task to accelerate data input

and output. While progress has been made there is still more work ahead to fully

optimise I/O. Examining the benchmarking results will be a key next step in creating

action points across our benchmark applications.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

28

3.5 Deployment and infrastructure (Task 2.6)

With Deep500 extended to support weather and climate workloads (Section 3.2),

we use Application 4 (A4) as a case study for deploying ML training. To that end,

we created a recipe for one of the training workloads in A4 and benchmarked the

process on different cluster infrastructures available to MAELSTROM. The results

were fully reproduced across three systems with the same script.

We reproduce results for uncertainty quantification on ensemble prediction sys-

tems [4] with the MAELSTROM ENS10 dataset. The model used is a U-Net variant

and contains specialized data augmentations for ensemble prediction. Below, we

highlight elements of the recipe. The full recipe is available online10.

1 # Fixed Components

2 def fixed_components_gen(cfg: UQDataClass):

3 return {

4 "model": model,

5 "model_kwargs": {

6 "in_channels": len(cfg.parameters) * len(cfg.time_steps) * 2,

7 "out_channels": 1,

8 },

9 "dataset": loader.CallableD500WeatherDataset(cfg),

10 "epochs": cfg.epochs,

11 }

12

13

14 # Mutable Components

15 def mutable_components_gen(cfg: UQDataClass):

16 return {

17 "batch_size": cfg.batch_size,

18 "executor": executor(),

19 "executor_kwargs": dict(device=d5.GPUDevice()),

20 "train_sampler": loader.WeatherShuffleSampler,

21 "train_sampler_kwargs": dict(seed=cfg.seed, args=cfg),

22 "validation_sampler": loader.WeatherShuffleSampler,

23 "validation_sampler_kwargs": dict(seed=cfg.seed, args=cfg),

24 "optimizer": d5fw.AdamOptimizer,

25 "optimizer_kwargs": dict(learning_rate=1e-2),

26 "events": [

27 RMSETerminalBarEvent(

28 loader.CallableD500WeatherDataset(cfg).test_set,

29 loader.WeatherShuffleSampler,

30 batch_size=cfg.batch_size),

31 CyclicLRScheduler(

32 per_epoch=True,

10https://github.com/spcl/deep-weather/tree/master/Uncertainty_Quantification/Deep500_recipe

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

29

https://github.com/spcl/deep-weather/tree/master/Uncertainty_Quantification/Deep500_recipe

33 base_lr=cfg.base_lr,

34 max_lr=cfg.max_lr,

35 step_size_up=(len(loader.CallableD500WeatherDataset(cfg)) //

36 cfg.batch_size) // 2,

37 step_size_down=None,

38 mode="triangular2",

39 gamma=1.0,

40 scale_fn=None,

41 scale_mode="cycle",

42 cycle_momentum=False,

43),

44],

45 }

A Deep500 recipe is defined by three elements: fixed components (that will not

change, see lines 1–11), mutable components (which may be tuned by differ-

ent hyperparameter searches, lines 14–45), and success metrics (which would

qualify a competitor to be ranked). Notice that this recipe is constructed from func-

tions, which are customized by the cfg parameter. This parameter is defined by

command-line arguments to allow for easy tuning on larger infrastructures, such

as Mantik.

The fixed components in our case define the benchmark itself, which is the basic

model, input/output channels, and the ENS10 dataset. In the mutable components,

aspects such as the deep learning framework (executor), the batch size, optimizer,

and hyperparameter tuners can be adapted and further tuned. The mutable com-

ponents rely on our newly developed weather-specific modules for augmentation

and training schedules, described in Section 3.2. Since the weather prediction

workload is a regression problem, we do not define any success criteria as metrics,

and thus every workload qualifies to appear in rankings.

Using our recipe, we ran training on local ETH compute resources, the JSC JUWELS

Booster supercomputer, and the E4 cluster. The automatically-generated results

by the recipe provide a breakdown of the training runtime, both per-epoch and per-

batch. Table 1 shows our results on JSC-booster machine. We ran all experiments

for six epochs with batch size 2 (same parameters as [4]).

Experiment
Number

Total
Training Time

Average Time
per Epoch

Average Time
per Iteration

Final
Validation Loss

GPU energy
consumption

1 4,451s 740s 1.14s 0.121 157.03Wh

2 5,062s 847s 1.08s 0.123 157.61Wh

3 5,021s 836s 1.07s 0.123 135.66Wh

Table 1: Training results of Deep500 recipe on JUWELS-Booster supercomputer.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

30

4 Conclusion

The current deliverable describes the development status of the W&C workflow

tools. Whereas the development of the core component - the full MAELSTROM

workflow tool and protocol - has not reached alpha stage as planned, the reasons

and obstacles encountered are mentioned above.

We can recognize, however, that the major problems can be solved, and a way

how to solve them is identified. At the current stage, we are confident to reach

usage within MAELSTROM in the following months.

The status will be presented on the PASC conference, and the feedback will be used

to reach beta stage for distribution to the wider community during the summer of

2022.

References

[1] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel

Peter, and Torsten Hoefler. A modular benchmarking infrastructure for high-

performance and reproducible deep learning. In 2019 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages 66–77, Los Alamitos, CA,

USA, may 2019. IEEE Computer Society.

[2] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image qual-

ity assessment: from error visibility to structural similarity. IEEE Transactions

on Image Processing, 13(4), 2004.

[3] Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017

IEEE winter conference on applications of computer vision (WACV), pages 464–

472. IEEE, 2017.

[4] Peter Grönquist, Chengyuan Yao, Tal Ben-Nun, Nikoli Dryden, Peter Dueben,

Shigang Li, and Torsten Hoefler. Deep learning for post-processing ensemble

weather forecasts. Philosophical Transactions of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences, 379(2194):20200092, 2021.

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

31

Document History

Version Author(s) Date Changes

0.1
Markus Abel, Fabian Em-
merich, Greta Denisenko
(4cast)

11/03/2022 Chapters 3.1 and 3.3

0.2 Saleh Ashkboos, Tal Ben-Nun
(ETH)

12/03/2022 Chapters 3.2 and 3.5

0.3 Mathhew Chantry (ECMWF) 14/03/2022 Chapter 3.4

0.4 Fabian Emmerich (4cast) 16/03/2022 Chapter 2.2

1.0
Markus Abel, Fabian Em-
merich, Greta Denisenko
(4cast)

30/03/2022 Final version

Internal Review History

Internal Reviewers Date Comments

Tal Ben-Nun (ETH) 20/03/2022
Review passed with minor
edits

Daniele Gregori (E4) 29/03/2022
Review passed with minor
edits

Estimated Effort Contribution per Partner

Partner Effort

4cast 2 PM

ETH 1 PM

ECMWF 0.5 PM

Total 3.5 PM

MAELSTROM 2022

D2.2 First version of workflow tools published that allows to perform quarterly
benchmarks of ML solutions

32

	Executive Summary
	Introduction
	About MAELSTROM
	Scope of this deliverable
	Objectives of this deliverable
	Work performed in this deliverable
	Deviations and counter measures

	Workflow tools by Work Package Tasks
	Workflow platform development (Task 2.2)
	Engine
	Coordinator
	SDKs
	Bridges
	Model Database

	Benchmarking (Task 2.3)
	User Interface (Task 2.4)
	Command Line Interface
	Model Database Interface
	HPC Interface
	GUI for Executor and Job Status

	Data input/output acceleration for W&C (Task 2.5)
	Deployment and infrastructure (Task 2.6)

	Conclusion

