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1 Executive Summary 

The architecture of a MAELSTROM platform needs to respect requirements from i) AI tasks, ii) the 

weather and climate workflow, iii) and from the use cases, i.e., the concrete applications defined in 

the MAELSTROM work packages. We find that the design of a platform dedicated for AI needs to 

have a generic form which reflects AI tasks. In addition, a protocol can be designed which is tailor-

made such that the enormous amounts of data that are available for weather and climate 

applications, and modern HPC infrastructures are accessible. This involves the flexibility of the 

protocol towards parallel data loading and/or storage. Eventually, the requirements collected for the 

different tasks A1-A6 were taken into account when the architecture and protocol were designed. In 

the current state, architecture and protocol are focused on a minimal viable product, such that W&C 

jobs can be run on the Jülich infrastructure.   
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2 Introduction 

2.1 About MAELSTROM 

To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke 

compute system designs for optimal application performance and energy efficiency, a software 

framework to optimise usability and training efficiency for machine learning at scale, and large-scale 

machine learning applications for the domain of weather and climate science. 

The MAELSTROM compute system designs will benchmark the applications across a range of 

computing systems regarding energy consumption, time-to-solution, numerical precision and 

solution accuracy. Customised compute systems will be designed that are optimised for application 

needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware 

developments, driven by general machine learning applications, toward the needs of weather and 

climate applications. 

The MAELSTROM software framework will enable scientists to apply and compare machine learning 

tools and libraries efficiently across a wide range of computer systems. A user interface will link 

application developers with compute system designers, and automated benchmarking and error 

detection of machine learning solutions will be performed during the development phase. Tools will 

be published as open source. 

The MAELSTROM machine learning applications will cover all important components of the 

workflow of weather and climate predictions including the processing of observations, the 

assimilation of observations to generate initial and reference conditions, model simulations, as well 

as post-processing of model data and the development of forecast products. For each application, 

benchmark datasets with up to 10 terabytes of data will be published online for training and 

machine learning tool-developments at the scale of the fastest supercomputers in the world. 

MAELSTROM machine learning solutions will serve as blueprints for a wide range of machine 

learning applications on supercomputers in the future. 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

Deliverable 2.1 is one of four MAELSTROM deliverables that survey the state-of-the-art in terms of 

methods, tools and developments in machine learning at the beginning of the project and aim to 

build additional links between the three work packages that are involved in the MAELSTROM co-

design cycle. Deliverable 1.2 is a survey of machine learning methods and tools that are currently 

used for weather and climate applications. Deliverable 2.1 contains a survey of existing machine 

learning workflow tools and a summary of the MAELSTROM protocol and machine learning 

requirements. Deliverables 3.1 and 3.2 provide a systematic analysis of the hardware requirements 

for the MAELSTROM applications and a roadmap analysis of hardware that will be relevant for 

machine learning in MAELSTROM. 
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2.2.2 Work performed in this deliverable 

The weather and climate (W&C) workflow is one of  the main concepts to be defined and clarified in 
this WP and used in the applications. Typical tasks have been identified and described in Sec. 3. The 
technical concepts of an engine that enables performant execution of the workflow tasks needs to 
be defined together with its components. Eventually, the specific tasks are mapped to the 
architecture such that an efficient execution is possible. This is enabled by communication between 
components which follows a protocol described in detail in Sec. 4. The top-level description of the 
MAELSTROM engine is given in a domain specific language, which is also explained in Sec. 4. In Sec. 
5, the requirements collected from the different applications are summarized and briefly discussed 
with respect to the implications on the MAELSTROM engine. The biggest space is given to the 
protocol, as it forms the basis for all subsequent tasks and is developed up to a state that allows 
implementation. 

2.2.3 Deviations and counter measures 

There are no significant deviations from the planned contributions of the deliverable.  
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3 Survey of the workflow 

3.1 Typical ML workflow        

A typical ML workflow consists of several steps: data loading, preparation, model training and 
prediction by the model. Since these steps in the workflow are conceptually independent from one 
another, the optimal workflow separates each step from its previous and subsequent neighbour and, 
as a result, ensures efficiency, scalability and reproducibility, and reduces complexity. While this 
appears to be simple when described at this level of abstraction, each task in the ML workflow has its 
own complexity that can make the work on each component time-consuming. While the preparation 
of data (also called preprocessing) is often the most expensive task for scientists, the data loading 
especially for large data sets consumes a substantial time when executing a ML workflow. However, 
each step of the workflow has its own problems that need to be optimized. 
 

3.1.1 Data loading       

At the beginning of a typical workflow, raw data have to be loaded to perform a preprocessing that 
enables training a model on them. Aiming for usage of data at petascale, this step is a challenge in the 
flow. Usually, data are stored as files and located on physical storage either on a local machine or a 
data cluster. The data have to be loaded into the local memory of the machine where the 
preprocessing is performed. 
 

3.1.2 Preprocessing        

Preprocessing is very time-consuming and can include a large amount of data transformations to 
arrive at the desired result. Typically, the data are cleaned, clipped, normalized, and/or outliers are 
removed, and so forth. Especially due to a large amount of noise in data sources, this step can be very 
exhausting. The data might also be extended with new information derived from the original data. 
Preprocessing procedures are usually very data-specific, i.e. a certain type of data always requires the 
same preprocessing to be fed to a certain type of ML model. As a consequence, these techniques must 
be easily reproducible and extendable. Furthermore, different data manipulation steps also require 
different frameworks. Additionally, when working with large data sets, the performance of the data 
processing might also be a bottleneck. 
 

3.1.3 Model training       

After preprocessing of the data, they can be used with the specific ML solutions they were designed 
for. The data are used to train a specific model that employs certain statistical and/or numerical 
methods. Once a model is trained, its quality can be elaborated using different kinds of metrics. Since 
the quality of a resulting model can hugely vary on input such as the preprocessed data (also called 
features) and model parameters, it is essential to be able to easily re-train a model with different 
settings to achieve the best possible quality. Moreover, the duration of the model training process can 
increase drastically with data size and model complexity. 
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3.1.4 Prediction 

The actual aim of a ML workflow is to develop a model to predict a certain behavior or trend from a 

sample of data. Here, the model quality impacts the accuracy of the predictions. The data that are 

fed to the model for prediction have to be of the same shape as the data that were used to train it. It 

is required to use the exact same workflow (data loading and preprocessing) as for training. Hence, it 

is indispensable that the part of a workflow that retrieved and processed the data of a certain model 

is easily and with the smallest possible effort reproducible. 

 

3.2 Addressing W&C-specific difficulties       

Compared to other domains, W&C ML applications reveal certain problems that dramatically hinder 
their workflow. Hence, it is essential to address these bottlenecks and, as a result, improve the speed 
and quality of W&C predictions. Especially the W&C domain uses large data sets up to petascale that 
slow down the workflow steps due to their mere size. 
        

● Data loading: W&C data can possess grids covering the whole globe or regions, e.g. Europe, 
resulting in large data sizes which slow down the data loading. Thus, the loading process has 
to be optimized by parallelisation: Due to limited memory sizes, the data should be split into 
smaller chunks and processed independently on different machines in parallel when working 
with tera- or petascale data sets. Furthermore, individual data samples (e.g. global maps) are 
often larger when compared to data samples from other domains resulting in memory 
limitations that, again, call for parallelisation and the use of smaller chunks. 

● Data formats: The W&C community uses different data formats than other ML domains 
(NetCDF, GRIB). These have a different shape compared to conventional data formats and, 
hence, must be processed in a different manner. However, this can be eliminated by 
separating data loading from preprocessing and the transformation of the data into a 
universal data format. 

● Preprocessing: The duration of data manipulation steps scales with the amount of data and 
are, thus, very time-consuming in W&C ML workflows. Some common Python frameworks 
such as pandas especially lack performance when operating on huge datasets. As a 
consequence, it must be ensured that the preprocessing of data allows usage of the most 
efficient techniques. Besides using high-performance frameworks such as numpy or xarray, 
this may also include organizing  data using different programming languages. In particular, 
standard tasks, e.g. inference using a trained model, are realized by compiled Go programs, 
thus minimizing container size and enhancing execution speed. 

● Model training: Certain model architectures reach high computational costs when executed 
on large data sets. With increasing data size, the time for creation of a model increases as 
well, which is one of the bottlenecks in the W&C ML workflow. This can be addressed by 
training models on distributed systems that possess a great computational performance, i.e. 
HPC clusters. 

● Model prediction: Models in the weather domain are trained often on processed data, like 
reanalysis data from era5, however when a model is used “in production” current NWP data 
are used for prediction.  For climate models, this does not hold in general.  
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3.3 Enhancing the W&C ML workflow 

3.3.1 Isolating workflow steps     

The steps of a ML workflow need not be strictly coupled necessarily. Additionally, scientists may want 
to use different frameworks such as PyTorch, TensorFlow, scikit-learn, etc., to produce their ML 
models. This, though, brings complications: the frameworks might be incompatible with each other or 
HPC systems may not even support using them. This is solved by using isolated environments (i.e. 
Docker and/or Singularity containers) to run the individual steps of a ML workflow. 
 

3.3.2 Storing workflows 

The training of a model is a development cycle. To produce high-quality models, it is necessary to be 

able to easily re-train a model with slightly tweaked input. Hence, it is essential for scientists to be 

able to store and reproduce their results any time. This option can be provided by ML tools that 

allow defining and storing ML pipelines which describe the data loading, preprocessing, model 

training and prediction using certain data sets. 

3.3.3 Supporting shared workflow        

It is essential to science that scientists share their knowledge and techniques to achieve the best 
advancement. This, of course, also applies to the ML domain. Hence, it must be possible for scientists 
to easily share their ML workflows with the community. Preprocessing of data requires the best 
domain knowledge when aiming for the optimal models. Scientists can only enhance their models by 
sharing and discussing their procedures and results with other domain experts. This is achieved by 
providing tools and platforms to create, store, and execute workflows dedicated for specific data sets. 
As a consequence, their workflows become transparent and comprehensible for other scientists and 
can be improved and shared across the community. 
 

3.3.4 Further use of stored workflows  

Once workflows are stored to a data base, it is possible to use their outcome as information for 

other scientists. This can be realized by recommender-tools like Deep500. The integration of such a 

recommender has  not yet been realized, it is under development. 
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4 Survey of the MAELSTROM protocol 

The MAELSTROM protocol reflects the W&C workflow as a specialization of a general ML workflow. 

Whereas in the domain language one speaks of the workflow, for an implementation the pipeline 

concept is used and consequently, this nomenclature is often used in the following. One can 

understand both terms as synonyms in most situations.  The architecture of a system realizing the 

workflow and implementing the protocol is shown in Fig. 1. 

The protocol defines the rules, syntax and semantics of communication between components of a 

system, possibly together with errors. The so-called interfaces between components are described 

by the protocol, in particular how messages and data are exchanged. The current status of the 

protocol is described in this document. Future enhancements are indicated, where necessary. 

4.1 The Backend - Mantik engine and alternatives  

The goal of a platform for ML in W&C is reflected by the platform requirements described in Sec. 5. 

At the start of the Maelstrom project, at one partner - 4Cast -  a Python framework was developed 

for applications like A6 (ML for the prediction of energy production by renewables). To enhance 

speed and stability, a type-safe engine was implemented (using the Scala programming language) 

that orchestrates ML jobs in a microservice architecture. That implies the use of containers, in 

particular Docker (docs.docker.com) and Singularity for HPC (sylabs.io/docs). Further, the pipeline 

concept for ML is enforced by offering the typical ML steps: data load, feature engineering, training, 

deployment, prediction, as explained below by a simple example. 

In the meanwhile, other platforms have realized similar concepts. This is summarized as well in Sec. 

5. Consequently, it is important to develop a description of a system that realizes the workflow for 

ML with additional specific features for W&C. This description is formed by the protocol. It 

essentially allows declaration of the elements of a W&C workflow which then are executed using an 

engine. Currently, in Maelstrom, the Mantik engine is used, but we want to point out that a 

replacement by another engine will be possible, as long as the protocol is implemented. 

4.2 Example - MNIST 

MNIST - i.e. image classification on a handwritten digits dataset - is a widely used introductory 

example in ML tutorials. As such we use it here to illustrate how to work with Mantik. 

The typical development flow is shown here: Declaration of a MantikItem (first listing), 

implementation of the model interface given by Mantik (second listing), upload of the Item (third 

listing) and workflow definition in an M-File (fourth listing). The files for two first steps are typically 

provided by more experienced users from the Mantik community or the Mantik core developers, 

such that they are available as service for other users and usable without modification. In the third 

and even more in the fourth step, the actual ML experiment is defined, it is the main part of the 

regular work being done by any researcher using Mantik.  

The model needs to be set up by declaring a method and the data. The item is internally represented 

by its existing implementation, the  bridge, this is a minor implementation detail. 
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To declare the item, a Mantik header is written, here, we comment after the # sign. 

name: mnist_linear    # name of the Mantik Item 

bridge: mantik/tf.train   # service abstracting tensorflow 

trainedBridge: mantik/tf.saved_model  # service optimized for inference (compiled Go) 

 

kind: trainable     # the type of the item 

 

metaVariables:     # list of metavariables. It is detailed in 

    - name: batch_size    # the documentation,  

      type: int32 

      value: 128 

-  

… 

 

trainingType:     # type needed for training this particular 

    columns:     # method 

        image: 

            type: tensor 

            shape: ["${height}","${width}"]  # metavariables for more dynamic typisation 

            componentType: float32 

        label: int32 

 

statType:     # if training requires: number of epochs  

    columns:     # and loss factor. This does not appear,  

        epoch: int32    # e.g. for data load  

        loss: float32 

 

type:      # input type. Must be compatible to the  

    input:     # tensorflow service. Refers to  

        columns:                             # inference (saved model part above). 

            image: 

                type: tensor 

                shape: ["${height}","${width}"] 

                componentType: float32 

    output:     # output type. Must be known to  

        columns:    # Mantik  

            label: uint8 

            logits: 

              type: tensor 

              shape: [10] 

              componentType: float32 

 

The payload needs to be sent to the service, once the Mantik header is written. As an example, here 

is the code for MNIST application: 

 

def train(request: TensorFlowTrainRequest, context: TensorFlowContext): 

    train_dataset = request.train_dataset() 

 

    # Meta Variables 

    batch_size = context.mantikheader.meta_variables.get("batch_size", 128) 

    n_epochs = context.mantikheader.meta_variables.get("n_epochs", 5) 

    learning_rate = context.mantikheader.meta_variables.get("learning_rate", 0.01) 

    width = context.mantikheader.meta_variables.get("width", 28) 

    height = context.mantikheader.meta_variables.get("height", 28) 

 

    stats = [] 

    batches = train_dataset.batch(batch_size) 

    iterator = batches.make_initializable_iterator() 

 

    data_x, data_y = iterator.get_next() 

 

    # Model setup 

    model = Model(data_x, data_y, learning_rate, width, height) 

 

    sess = context.session 
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    sess.run(tf.global_variables_initializer()) 

    sess.run(tf.local_variables_initializer()) 

    sess.run(iterator.initializer) 

 

    for epoch in range(n_epochs): 

        sess.run(iterator.initializer) 

 

# Training 

        try: 

            while True: 

                _, current_loss = sess.run([model.optimizer, model.loss]) 

        except tf.errors.OutOfRangeError: 

            pass 

 

        print("Epoch ", epoch, " of ", n_epochs, " loss=", current_loss) 

        stats.append([epoch, current_loss.item()]) 

 

    # Calculating Accuracy 

    sess.run(iterator.initializer) 

    try: 

        while True: 

            sess.run([model.accuracy_op]) 

    except tf.errors.OutOfRangeError: 

        pass 

    accuracy = sess.run(model.accuracy) 

 

    # Model export 

    dir = "trained_model" 

    model.export(context.session, dir) 

    request.finish_training(Bundle(value=stats), dir) 

 

One recognizes the method train . In it, model setup, training and model export are called. In terms 

of software development, Items define an interface for trainable models, dataset items etc. that an 

Item developer needs to implement. Within these interface implementations, the user is free to 

implement what they need, however, input and output must fit the declaration of the header file. 

Why that? In a pipeline, e.g. output of feature engineering must fit input to training. This is 

automatically checked by the engine and helps bookkeeping the development of proper 

applications. Mantik has some built- in adapters that convert data to Mantik format and transform 

between two compatible types. These adapters will be extended by the Mantik core developers as 

well as the community. 

The above defined Item can then be added to the Item database with a Mantik Client: 

import mantik.engine 

with mantik.engine.Client("localhost", 8087) as client: 

  mnist_item = client.add_artifact( 

  <path_to_MantikHeader>, 

  named_mantik_id = "<user>/mnist_linear" 

  ) 

 

This is the protocol concerning items.  

Eventually, the workflow shall be abstracted completely and the user should not bother with details 

inside an item - once many items are implemented, for most of the frameworks an implementation 

exists which can be used. Then, the DSL used in the Mantikfile comes into play: Typical actions are 

abstracted away and a file with declaration of input, pipeline steps, and output that shall serve the 

setup of a ML pipeline. A draft which is found in many other ML tools is: 
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""" 

Mantikfile 

This snippet shows all configuration that is not directly related to pipeline definition. 

""" 

# Initialize tasks as instance of `MantikItem`, pass additional configuration 

 

get_data = MantikItem(name="mantikai/binary:v1").configure( 

    params={"file": "<filename>"} 

) 

 

# Define shorthand for output names, valid globally 

 

images, labels = get_data.get_output_reference() 

 

pre_process = MantikItem(name="<user>/pre-processor") 

 

# mark `batch_size` as hyperparameter, to be used below 

 

batch_size = HyperParameter() 

 

# Use the item that was specified above 

train = MantikItem(name="<user>/mnist_linear:v1").configure( 

    params={"batch_size": batch_size} 

) 

 

# Common tasks will be builtins, especially evaluation, SQL like operations, timelag 

 

evaluate = evaluate(metric="rmse") 

 

 

# Aggregate multiple steps so that both can be used in hyperparameter search 

 

train_and_evaluate = pipeline_component(train, evaluate) 

 

 

# Set input names so that they can be referenced easily in the pipeline definition 

 

train_and_evaluate.train.set_input_name("data_train") 

train_and_evaluate.evaluate.set_input_name("data_test") 

 

 

# Define hyperparameter search 

 

hyperparameter_search = HyperParameterSearch( 

    train_and_evaluate, 

    hyperparameters={"batch_size": [64, 128, 256]}, 

    metric=train_and_evaluate.evaluate.metric, 

) 

 

 

# Deployment (here: save model to a database) can be defined via builtin functions 

 

deploy = save_model() 

 

 

# Inputs are set in the pipeline so that Items can be reused in multiple pipelines 

# Configuration can also be done in the pipeline definition; this is meant to aide the 

development of more complex pipelines with repeated use of mantik items 

 

batch_pipeline = MantikPipeline( 

    stages={ 

        "stage1": [ 

            get_data, 

            pre_process.set_input(images), 

            dsl.builtins.join( 

            inputs=[pre_process.output, labels], reference="join1", how="inner" 

            ), # reference arg is for referencing this particular join in later pipeline 

steps; join has pandas like arguments 

        ], 
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        "stage2": [ 

            dsl.builtins.train_test_split(data=[join1.output], reference="split"), 

            hyperparameter_search.set_input( 

            data_train=split.output.train, data_test=split.output.test 

            ), 

        ], 

    "stage3": [deploy.set_input(hyperparameter_search.best_model)], 

    } 

) 

 

 

# Create a new MantikItem for inference (reference the output of the deploy step) 

 

predict = makeMantikItem(batch_pipeline.stage3.deploy.best_model) 

 

 

# Define an inference pipeline 

 

predict_pipeline = MantikPipeline( 

    stages={ 

        "stage1": [pre_process.set_input(images)], # Images is defined above to reference 

(part of) the output of get_data 

        "stage2": [predict.set_input(pre_process.output)], 

    }, 

) 

 

########################################################## 

 

# Time lag, used as a builtin function directly in the pipeline 

# Suppose get_data returns a timeline; can be imported from somewhere else 

 

dummy_pipeline = MantikPipeline( 

    stages={ 

        "stage1": [ 

            get_timeline, 

            timelag( 

                timeline=get_data.output, 

                lag_column="time", 

                lag="1h", 

                reference="timelag1", 

            ), 

        ] 

    } 

) 

 This example is a draft for the implementation. It becomes clear that a lot of boilerplate 

code which is needed for a production system is written in the background. 

 

4.3 Items and their Interfaces  

The items used by MAELSTROM must realize the W&C workflow described above. In particular, HPC 

capabilities need to be realized by the abstract description allowed for an item. To be as specific as 

needed and as general as possible the items realize typical parts of a workflow. Items are 

consequently specified in the header which declares the item function and provides necessary 

(software-) infrastructure.  

An Item has a container, a payload (user-supplied code to be used), and its header. Clearly, this is 

programming-language agnostic and depending on the language the concrete interface definition 

may vary. The most important notation concerns the kind of the item. It is (currently) restricted to 

be one of  

dataset, algorithm, trainable, deployment 
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With these basic item types the W&C workflow can be realized, and at the same time, usage beyond 

these tasks is not possible. On the most basic level, the Item kind just defines the number of inputs 

and outputs of said Item. Together with built-in combiners (aggregate multiple inputs to one output 

or the other way round), a general directed acyclic graph can be expressed in terms of these kinds. 

Of course, the concept is extensible and new types or subtypes can be added, if needed. 

4.4 M-File 

At the top level stands the MAELSTROM-File, or Mantikfile, hence M-File. It is written in a descriptive 

language which aims to form a so-called Domain-Specific-Language, DSL. We use python-like syntax 

to ease understanding for the majority of the data scientists and allow for IDE features such as 

syntax highlighting and code formatting. The M-File serves two purposes: 

● The user can develop new workflows or inspect and adapt existing ones (e.g. from the 

algorithm database). 

● The M-File is the single source of truth for the workflow definition and thus guarantees 

reproducibility. It can easily be version-controlled, e.g. in git. 

In the Mantik DSL, the basic engine API is exposed as built-in objects, methods and functions. The 

syntax allows the initialization of the built-in objects and the call to these objects' methods. All other 

python syntax (function and class definitions, decorators ...) is explicitly discarded. 

Semantically, the ontology of the Mantik engine can be expressed in the Mantik DSL: The main 

objects are Items and Pipelines (collections of Items with an explicit definition of execution order 

and data flow). It is assumed that the Items are available in a database and can be referenced by ID 

or name. Methods for adding Items to this database are available in the Client. 

For highly parallelizable hyperparameter optimization we offer the `Hyperparameter` class. An 

instance of said class can be used for MantikItem configuration and then be varied on engine level, 

i.e. executed automatically in parallel in different MantikItem instances. 

We are currently working on the implementation of built-ins for: 

● train test split, 

● time lag coordinates, 

● model deployment. 

 

4.4.1 DSL specification 

The  domain specific language is based on the following principles: 

● The DSL uses RPython syntax, no "power features" such as functions or decorators. 

● There are two fundamental objects: Item and Pipeline. 

● Tasks (single execution steps) are initialized as Item objects; configuration can be passed. 

● Tasks can be grouped for convenience. 

● Typisation is not needed since the information is already included in the underlying Mantik 

headers. Data transformations are inferred by the engine if necessary. 
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● Tasks are referenced by the object name, optionally a reference keyword can be passed.  

● We provide built-ins for set  operations, train test split, time lag and basic evaluation as well 

as model deployment. 

● Pipelines are initialized as Pipeline objects. 

● Tasks in a pipeline are grouped in stages; stages can be used for partial execution. 

● Task dependencies are declared with `task_b.set_input(task_a.output)` inside the pipeline. 

● Hyperparameters can be initialized as `param = Hyperparameter` and used in MantikItem 

configurations. 

● Hyperparameter search is initialized as `hs = HyperParameterSearch(...)`. It can be used in 

the pipeline like any other task. 

 

4.5 Architecture 

Here, the architecture of the system shall be explained. The architecture is microservice-oriented 

and under development. The workflow has been described above in Sec. 3, here we describe how 

this is reflected in the components that build the system, cf. Fig. 1. If the user has developed some 

ML code, this code shall be executed. This is handled by the Mantik engine which plays the 

counterpart of an operating scheduler in that it takes tasks and executes them in a certain order. The 

whole architecture is service-based using the  Mantik Items, which are container-services. These 

items serve functionality necessary to execute tasks and can be connected such that execution is 

most performant. The tasks are sent to the engine by user-side clients. In these clients, top-level 

code is stored and the corresponding tasks are sent. Since Python is the dominant language for ML, 

Python code is supported best e.g. by a Jupyter notebook client. However,  a developer is free to 

implement code in any language as long as the services connect with the right input and output 

types, declared in the protocol. Said this, it has to be made clear that introduction of a new 

programming language may involve the development of basic containers that speak the Maelstrom 

protocol.  Of course, items with different languages may be mixed.   

By the above, implicitly a role concept is introduced: one role is the  core developer which helps to 

develop the backend code for Mantik, e.g. by implementing new services and frameworks in terms 

of items that are ready to be used, or by enhancing the engine in various ways. This typically 

requires library programming skills and deeper understanding of containers as microservices. The 

second role is the community developer  who implements custom models or data loading and 

processing tasks to be executed in Mantik Itemsthe ML user which develops ML applications, which 

requires know-how in data science and domain knowledge. Thirdly, the W&C user applies available 

tasks implemented by the community with some straightforward configuration options and mix and 

match those to a workflow as defined in the M-File (see below).  

 Eventually, the orchestration of many tasks is managed by the engine. 
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Figure 1: Left: Architecture concept. The engine orchestrates the workflow sent by the ML users  
(top left actor).The users  develop ML code in the language of their choice, at the moment this will be 99% 
Python code. They send this code as payload to the engine which infers actions on how to execute the code 

using the protocol. The execution uses “items” - container services that run on the target system. Such 
containers use infrastructure to read and write data. So far, any pipeline could be executed, as long as it is 
known to the engine. Right: More concrete view on the components: The realization of Mantik engine in 

Maelstrom -the Maelstrom Engine- uses a specific implementation, dedicated to HPC execution and the usage 
of huge data. The items are specified according to the ML flow adapted to W&C. In the figure, only basic 

workflow steps are indicated. Parallel execution of tasks should be organized by the engine, if possible. It is 
indicated as multiple containers in the feature engineering step. The concept is flexible enough to be modified 

during Maelstrom such that more involved services can be added or unsuitable ones can be removed and 
replaced by the ML engine.  

The MAELSTROM protocol now specializes the underlying protocol for general machine learning in 

that certain types are declared - and will be sharpened during further development - which contain 

exactly the needed functionality, and not more. This restricts the possible use cases, and on the 

other hand offers some clarity for ML users, since one can only use functionality needed for the 

concrete W&C application.  It shall be noted that, in principle, the development of a script that 

contains all parts of a workflow at once, is possible and not forbidden. Then, however, the user is 

deprived of the functionality that will be implemented in the specialized services (e.g. automated 

detection of parallelization options, cleaning routines, etc.). It shall be noted, too, that the 

development of the specialized components is subject to community contributions. 

From top layer to lowest layer, we have a hierarchy of linked declarations and communication 

protocols. In the following subsection this rather abstract view is illustrated. 
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4.6 MNP - Mantik Node Protocol 

The communication between components, in particular between engine to Items and Item to Item,  

is ruled by the MNP (mantik node protocol). Consequently, an Item container has to implement the 

MNP to enable communication between the services. This protocol builds on protocol buffers (the 

protobuf library, cf. https://en.wikipedia.org/wiki/Protocol_Buffers), designed for serialization and 

used mainly for communication and storage of data - properties needed for  the items.  A full 

documentation is given in the documentation of the Mantik core 

(http://mantik.pages.ambrosys.de/core/Mnp.html). In the following, we denote any component as 

node, which is the abstract representation used by the engine. 
It is designed to solve the following requirements. 

● Algorithm nodes can transform data. It’s not necessary to receive all data in order to start a 

response. 

● Running Items can be reconfigured. 

● Only one container is needed for an Item. 

● There must be a concept of a single task. 

● The lifecycle of an Item can be controlled from the outside. 

● The protocol can be tunneled through http proxies. 

● Streaming of data, and thus asynchronous computation, is supported. 

4.6.1 How MNP works 

MNP is meant to be a transport protocol for nodes. It is not specific for W&C flows. Processes that 

follow the MNP have the following properties: 

● A session is initiated by the engine. 

● Each session has a set of input and output ports. 

● Within a session, data are pushed to input ports and responses read from output ports. 

● During session init, it is possible to “wire” output ports to other processes' input ports. Data 

generated on these output nodes will be automatically forwarded. 

By default, a MNP server begins listening / waiting for a session. Once an init-session command is 

received, a session is initialized. The init-session call must define the number of expected input and 

output ports. Mantik adds some Init-Configuration (MantikHeader for bridges and URL of payload). If 

the Init-Session succeeds, a new session is opened, and the corresponding node waits for input data. 

http://mantik.pages.ambrosys.de/core/Mnp.html
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Figure 2: Session description and usage of the MNP 
The engine handles sessions as follows: During startup (top tile) the session is initialised. Within the session, 

any data push or pull, or query Task command for datasets, is created and run. When all tasks are finished, the 
session is closed. 

The init-session call may contain forwarding information, such that tasks forward their output to 

other nodes, saving data roundtrips. 

Data are transferred using push-Calls and received using pull-Calls. All push and pull calls contain a 

task ID. The first pull/push with an unknown taskId creates a Task in which data processing takes 

place. The Task lives as long as processing is done. 

It’s also possible to create a task with a Query-Task command. This is necessary for Nodes which only 

create data and forward it. 

The protocol is parallel and asynchronous: 

● Any number of sessions can be created in parallel. 

● Any number of tasks can be created in parallel inside a session. 

● Session Creation may take some time, this is reflected by a stream-response. 

● Push and Pull both use streamed asynchronous data. 
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The commands of the protocol are about, init, quit, quitSession, push, pull, queryTask which realize 

the above possibilities. 

The MNP defines the low-level communication between engine and Items. It is implemented by the 

Mantik core developers. For Item development higher level interfaces have been derived (see 

below); the average user does not get into direct contact with the protocol nor the handling of 

sessions and tasks shown in figure 2. 
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5 Survey of machine learning requirements 

In this chapter, we briefly summarize the requirements for a ML architecture and their 

realization. 

In the last few years many platforms have emerged, often from scratch. Big cloud providers 

have discovered AI as a potential opportunity and have developed platforms like Sagemaker 

(AWS), Google's AI platform with well described AI workflow, IBMs Watson, MLFlow, and many 

others of similar concept and realization. A detailed discussion of each of the existing solutions 

would exceed the scope of this document by far, and a publication on a comparison of the 

underlying architecture or the corresponding requirements has not been found and would likely 

be outdated already after a couple of months. Of course, this is also caused by the protection of 

proprietary codes.  

There are, however, blogs or explanatory articles on the platforms themselves and some journal 

issues where requirements for ML platforms are given [1][2][3]. A nice overview is given in [4], 

where requirements are explicitly described. A recent arXiv publication explicitly presents the 

different concerns and perspectives of Stakeholders [5]. Basically, all systems reflect the key 

requirements of users: 

1. Easy access for the specialized community, typically through a python/jupyter notebook 

2. Automated pipeline building 

3. Flexibility in package usage (no vendor lock-in) 

4. Reproducibility of the model results 

5. Parallelizable 

6. Batch training and live prediction go hand in hand 

7. Easy and controllable configuration of models  

The commercial platforms typically offer workflows and corresponding architectures for a 

dedicated user audience. None of the platforms is dedicated to the W&C flow with 

extraordinary data volumes and highly performant hardware with restricted access. 

From the MAELSTROM users, a survey has been performed to understand the specific needs 

with respect to the functionality the W&C workflow requires in addition to the above. 

The results can be summed up as follows: 

Requirements with respect to model development: Jupyter notebook is favored. 

Requirements on versioning ML models were inhomogeneous, such that a first solution consists 

of storage of the complete environment 

Requirements on model handling (chaining, retraining) resulted in a vote for the offered 

possibilities. Interestingly, parallelization was required to be handled by a platform. 
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Requirements on the workflow show that any of Data cleaning, Validation/Testing, Hyper-

parameter - optimization, Feature engineering, Execution is needed. The typical workflow 

coincided with the description in Sec. 3. 

Requirements on data were quite diverse, however for W&C, clearly, two formats are used 

(NetCDF and GRIB) and a platform may support those formats optimally. 

5.1 ML frameworks and software  

In the following, a short description of each of the well-established software and tools that the 
participants primarily rely on in this project is given. 
 
● CliMetLab (https://climetlab.readthedocs.io/en/latest/) is a python package that is used to 

manage the downloading and loading of climate and meteorological data, for a variety of 

datasets, dubbed plugins. In the MAELSTROM project, CliMetLab plugins have been created for 

each of the six applications. Users can access the benchmark set within minimal lines of code. 

● Jupyter notebook (https://jupyter.org/) is an open source web application. Jupyter notebooks 

that can be used for sharing code, equations, visualization and text. In the MAELSTROM project, 

Jupyter notebooks have been created to explore the benchmark datasets and demonstrate 

simple machine learning solutions.    

● TensorFlow (https://www.tensorflow.org/) is a well-known open-source software library for 

high-performance numerical computation. Its flexible architecture allows easy deployment of 

computation across a variety of platforms (CPUs, GPUs, TPUs).   

● PyTorch (https://pytorch.org/) is an open-source ML library, used for applications such as 

computer vision and NLP. 

● Tensor Core can accelerate large matrix operations, which are the heart of DL.  

● CUDA (https://developer.nvidia.com/cuda-zone) is a parallel computing platform and 

programming model developed by NVIDIA for general computing on graphical processing units 

(GPUs). 

● xarray (http://xarray.pydata.org/en/stable/) is an open-source project and Python package that 

makes working with labelled multi-dimensional arrays simple, efficient. 

● Horovod (https://github.com/horovod/horovod) is an open-source distributed training 

framework for TensorFlow, Keras, PyTorch, and MXNet. 

 

5.2 Distribution of data and executables 

The massive datasets in W&C applications become the main bottleneck to train the model within a 

reasonable time. Moreover, more advanced and complex architectures have been continuously 

developed and the number of trainable parameters have been increased significantly to achieve 

promising accuracy. The current hardware hardly satisfies the memory requirements of such large DL 

models.  In this context, distributed training for deep learning models is necessary.  Since it is essential 

for W&C applications, it is summarized here bya short introduction to the two parallelism strategies – 

Data parallelism and model parallelism that are explored in the MAELSTROM project.  

https://climetlab.readthedocs.io/en/latest/
https://jupyter.org/
https://www.tensorflow.org/
https://pytorch.org/
https://developer.nvidia.com/cuda-zone
http://xarray.pydata.org/en/stable/
https://github.com/horovod/horovod
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Data parallelization: In data parallelization strategy as shown in Figure 3, the data are split into N 

subsets, which corresponds to the number of GPUs. The model is copied onto each GPU, and trained 

on each subset to obtain the gradients.  The gradients on all the GPUs are accumulated and averaged 

to update the model parameters in the next training iteration.  

Model parallelization: Model parallelization strategy splits the model into different parts. The same 

minibatch samples are copied to all GPUs. Each part of the neural network is trained on the same 

samples. In this case, the models are not stored in one place, which can effectively conserve memory 

[6].  

 

Figure 3: The illustration of data  parallelization strategy. 

  



 

MAELSTROM 2021 

 

 

    
    
D2.1 Report on the survey of the workflow, the MAELSTROM protocol and ML requirements 26 
 

6 Conclusion 

In this document, we discussed the state of the art and status of the development of the 

MAELSTROM platform in depth. The specific requirements of the W&C community have been 

evaluated and discussed and the plans for the platform that will be developed have been adjusted 

accordingly. However, the overall workflow for W&C remains similar to the workflow of ML 

applications in other domains.  

The differences emerge in the details, like size of a dataset used to train a ML model, and support of 

HPC infrastructure. Surprisingly, the actual application of ML does not seem to be the greatest 

challenge for the individual MAELSTROM applications. Hard restrictions on storage and data 

handling seem to be most problematic. 
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